鎳酸鋰廢電池正極材料的浸出方法
【專利摘要】本發(fā)明介紹的鎳酸鋰廢電池正極材料的浸出方法是將從鎳酸鋰廢電池中分離出的并經焙燒預處理得到的正極材料和玉米秸稈粉加入耐壓、耐硫酸和硝酸腐蝕的反應釜中,加入硫酸和硝酸的混合溶液,并在密閉條件下進行攪拌浸出。
【專利說明】鎳酸鋰廢電池正極材料的浸出方法
【技術領域】
[0001]本發(fā)明涉及鎳酸鋰廢電池正極材料的一種浸出方法。
【背景技術】
[0002]鎳酸鋰電池是一類廣泛使用的電池,該電池使用報廢后將產生大量廢電池。由于這類電池含有大量重金屬,若棄入環(huán)境,將對環(huán)境產生很大的直接和潛在危害。鎳酸鋰廢電池正極材料主要含鎳、鋰、銅和鋁,其中鎳、鋰和銅三者的總含量大于60%,很具回收價值。目前從鎳酸鋰廢電池正極材料中回收鎳、鋰和銅的工藝主要有火法工藝和濕法工藝。火法工藝得到的產品為合金材料,很難獲得較純的鎳、鋰和銅。濕法工藝比較容易得到較純的鎳、鋰和銅。浸出是濕法工藝中必不可少的一個過程。目前鎳酸鋰廢電池正極材料的浸出方法主要有鹽酸浸出法、硫酸浸出法、硝酸浸出法和混酸(硫酸加硝酸)浸出法。鹽酸浸出法,設備腐蝕大,酸霧產生量大而污染環(huán)境。硫酸浸出法消耗較昂貴的還原劑(如雙氧水等),而且浸出速度較慢,酸耗高。硝酸浸出法的硝酸消耗量大,而且會產生大量氮氧化物,污染環(huán)境。所有的濕法工藝都存在如何經濟地提高浸出速度、提高金屬浸出率、降低酸耗和其它輔料消耗的問題。雖然硝酸加工業(yè)純氧浸出法和混酸加工業(yè)純氧浸出法較好地解決了上述問題,但浸出設備較復雜,而且廢電池浸出所需工業(yè)純氧量不大,廢電池處理企業(yè)就地生產工業(yè)純氧自用不經濟,工業(yè)純氧的儲存、運輸和使用比較麻煩。開發(fā)設備腐蝕小、浸出速度快、浸出率高、酸耗和其它輔料消耗低、使用方便、基本無環(huán)境污染的鎳酸鋰廢電池正極材料的浸出方法具有較大實用價值。
【發(fā)明內容】
[0003]針對目前鎳酸鋰廢電池正極材料浸出的問題,本發(fā)明的目的是尋找一種金屬浸出率高,浸出速度快,浸出率高,酸耗和其它輔料消耗低,使用方便,不用昂貴還原劑,基本無環(huán)境污染的鎳酸鋰廢電池正極材料的浸出方法,其特征在于將從鎳酸鋰廢電池中分離出的并經焙燒預處理得到的正極材料和< 1.5mm的玉米秸桿粉加入耐壓、耐硫酸和硝酸腐蝕的反應釜中,加入硫酸和硝酸的混合溶液,并在密閉條件下進行攪拌浸出。浸出結束后進行液固分離,得到所需浸出溶液。反應溫度為60°C~80°C,浸出的硫酸初始濃度為Imol/L~4mol/L,硝酸的初始濃度為5g/L~10g/L浸出時間為2h~4h,浸出過程進行攪拌,攪拌速度為30r/min~120r/min。硫酸加入量為加入反應容器的正極材料中全部金屬浸出的硫酸理論消耗量的110%~140%。玉米秸桿粉的加入量以干基計為正極材料中LiNiO2質量的90%~120%。
[0004]本發(fā)明的目的是這樣實現(xiàn)的:在密閉并有玉米秸桿粉和硝酸存在的條件下,硫酸浸出經焙燒預處理后的鎳酸鋰廢電池正極材料(材料中的鎳和鋰以鎳酸鋰形式存在,銅和鋁主要呈金屬氧化物形態(tài))時,浸出過程發(fā)生如下主要化學反應:
CuO + H2SO4 = CuSO4 + H2O
Al2O3 + 3H2S04 = 3A12 (SO4) 3 + 3H20nC6H1005 + nH2S04 =n (C5H11O5) HSO4
n (C5H11O5) HSO4 + nH20 = nC6H1206 + nH2S04
C6H12O6 + 8HNO3 = 8N0 + 6C02 + IOH2O
nC6H1005 + 8nHN03 = 8nN0 + 6nC02 + 9nH20
6LiNi02 + 9H2S04 + 2N0 = 6NiS04 + 3Li2S04 + 2HN03 + 8H20
鎳酸鋰的總反應為:
24nLiNi02 + nC6H1005 + 36nH2S04 = 24nNiS04 + 12nLi2S04 + 6nC02 + 4 InH2O玉米秸桿粉中的其它有機物也與硝酸反應生成NO、CO2和H2O,生成的NO與LiNiO2和H2SO4 按前述反應生成 NiSO4、Li2SO4, HNO3 和 H2O。
[0005]由于硝酸與玉米秸桿粉的反應速度較快,產生的NO與LiNiO2的反應也較快,由此加快整個浸出過程,并實現(xiàn)LiNiO2較完全浸出。NO可以徹底破壞正極材料中高價氧化物的層狀結構,提高有價金屬的浸出率。
[0006]相對于現(xiàn)有方法 ,本發(fā)明的突出優(yōu)點是采用玉米秸桿粉作還原劑,硝酸作浸出加速劑浸出鎳酸鋰廢電池正極材料,反應速度快,反應酸度較低,硫酸和還原劑的消耗量小,并且玉米秸桿粉便宜;正極材料中高價氧化物的層狀結構破壞徹底,可提高金屬浸出率;浸出液后續(xù)處理中不需要中和大量的酸,成本較低;浸出液后續(xù)處理中產生的廢棄物量少,降低了污染治理費用,具有明顯的經濟效益和環(huán)境效益;過程在密閉條件下進行,避免了NO逸出產生的環(huán)境污染。
[0007]具體實施方法
實施例1:將100g鎳酸鋰廢電池正極材料(含鎳54.3%,鋰5.5%、銅7.8%、鋁3.1%)和(1.5mm玉米稻桿粉30g加入容積為2L的襯鈦壓力反應爸中,加入硫酸濃度為1.5mol/L、硝酸濃度為5g/L的混酸溶液13001111,在601:~701:下攪拌(攪拌速度801'/1^11)浸出4.0h,浸出結束后進行液固分離,得到1250ml浸出溶液(不含浸出渣洗滌水)。鎳、鋰、銅、和鋁的浸出率分別為99.0%、99.1%、98.5%、和98.7% (按進入浸出溶液和浸出渣洗滌液中的鎳、鋰、銅、和鋁計算)。
實施例2:將500g鎳酸鋰廢電池正極材料(含鎳54.3%,鋰5.5%、銅7.8%、鋁3.1%) ( 1.5mm玉米秸桿粉190g加入容積為5L的襯鈦壓力反應釜中,加入硫酸濃度3.5mol/L、硝酸濃度為10g/L的混酸溶液3200 ml,在70°C~80°C下攪拌(攪拌速度70r/min)浸出2.0h,浸出結束后進行液固分離,得到3000 ml浸出溶液(不含浸出渣洗滌水)。鎳、鋰、銅和鋁的浸出率分別為99.1%、99.2%,99.3%和98.9% (按進入浸出溶液和浸出渣洗滌液中的鎳、鋰、銅和鋁計算)。
【權利要求】
1.一種鎳酸鋰廢電池正極材料的浸出方法,其特征是將從鎳酸鋰廢電池中分離出的并經焙燒預處理得到的正極材料和< 1.5mm的玉米秸桿粉加入耐壓、耐硫酸和硝酸腐蝕的反應釜中,加入硫酸和硝酸的混合溶液,并在密閉條件下進行攪拌浸出,浸出結束后進行液固分離,得到所需浸出溶液,反應溫度為60°C~80°C,浸出的硫酸初始濃度為lmol/L~4mol/L,硝酸的初始濃度為5g/L~10g/L浸出時間為2h~4h,浸出過程進行攪拌,攪拌速度為30r/min~120r/min,硫酸加入量為加入反應容器的正極材料中全部金屬浸出的硫酸理論消耗量的101%~140%,玉米秸桿粉的加入量以干基計為正極材料中LiNiO2質量的90% ~120%
【文檔編號】C22B7/00GK103757287SQ201310736463
【公開日】2014年4月30日 申請日期:2013年12月29日 優(yōu)先權日:2013年12月29日
【發(fā)明者】龍炳清, 秦丹, 曹攀 申請人:四川師范大學