亚洲成年人黄色一级片,日本香港三级亚洲三级,黄色成人小视频,国产青草视频,国产一区二区久久精品,91在线免费公开视频,成年轻人网站色直接看

以聚二甲基硅氧烷作為基片材質的微流控芯片裝置的制作方法

文檔序號:11824678閱讀:168來源:國知局

本發(fā)明涉及一種以聚二甲基硅氧烷作為基片材質的微流控芯片裝置,屬于分析測試領域。



背景技術:

關于微流控技術其本身的整體概貌而言,可以參見著名微流控專家林炳承先生不久前出的專著“圖解微流控芯片實驗室”,該專著已經由科學出版社出版,該專著對于微流控技術的過去、現在,以及,未來展望等等方面,都有著詳盡的、深入到具體細節(jié)的長篇論述。

微流控芯片經常應用到的領域包括對含有生物大分子的試樣溶液進行各種分析、檢測。

微流控芯片的基本架構,包括刻蝕有微小液流通道的基片以及與之貼合在一起的蓋片,所述基片上的微小液流通道,在裝配上蓋片之前,表觀上看就是一些微槽道,要等到在其上覆蓋了蓋片之后,才真正閉合形成所述微小液流通道,該微槽道的槽道內表面連同包繞著該微槽道的那部分蓋片一起構成所述的微小液流通道;那么,顯然,裝配完成了之后的該微小液流通道,它的內表面面積的主要部分是那個微槽道的內表面面積,換句話說,該微槽道內表面的狀態(tài)或性質基本上決定了該微小液流通道的整體狀態(tài)或性質;因此說,這個構建在基片上的微槽道的內表面狀態(tài)或內表面性質是關鍵因素;原則上講,任何的能夠保持或基本保持其固體形態(tài)的材料,都能夠用來制作基片及蓋片,比如,能夠用作基片及蓋片的材料可以是單晶硅片、石英片、玻璃片、高聚物如聚二甲基硅氧烷、聚甲基丙烯酸甲酯、聚碳酸酯等等;當然,基片的選材和蓋片的選材可以相同,也可以不相同;從材料耗費、制作難度以及應用普及前景等等方面來看,這些材料之間存在不小差異,尤其是那個基片的選材,影響較大。

在各種基片制作材料中,聚二甲基硅氧烷,即PDMS,相對而言十分容易成型,在這樣的基片上制作微槽道極其簡單,并且該材料成本低廉,以該聚二甲基硅氧烷材料制作基片,在其上壓制或刻蝕微槽道,并與玻璃或聚丙烯或其它塑料片等廉價材料制作的蓋片相配合,貌似是一種比較理想的選擇;當然,蓋片材料也可以選擇使用廉價的聚二甲基硅氧烷材料:那么,這種基片選材為聚二甲基硅氧烷材料的方案,材料極便宜,制作極簡易,看似也應當極易于普及、推廣。

但是,事情并非如此簡單。

其一,這個聚二甲基硅氧烷材料,即縮寫字母PDMS所指代的材料,其本身是一種強烈疏水的材料,在這一材料上構建微槽道,如果不進行針對該微槽道表面的改性操作,那么, 整體裝配完成之后,即蓋上蓋片后,因結構中的所述微槽道其內表面占據了大部分的液流通道的內表面,那么,該PDMS微槽道內表面其強烈的疏水特性,是決定性因素,它會使得類似于水溶液的極性液體微細液流的通過變得十分困難,其流動阻力之大,甚至一般的微泵都難以推動,當然,如果蓋片也選擇使用該PDMS材料,那么,問題基本上一樣,大同小異;因此,在現有技術之中,特別針對該PDMS材料上的微槽道內表面進行改性修飾,是必須的操作;那么,這個針對PDMS微槽道內表面的改性操作很麻煩嗎?那倒也不是這個問題,構成嚴重技術困擾的,是另一個問題:這個PDMS材料基片其體相內部的PDMS聚合物分子具有自動向表面擴散、遷移的特性,這種基片體相內部PDMS聚合物分子自動向表面擴散、遷移的特性,將使得經過表面改性修飾的那個微槽道其內表面的改性之后的狀態(tài)并不能維持足夠長的時間,那個經表面改性之后的微槽道其內表面狀態(tài)的維持時間大致僅夠完成實驗室內部測試實驗的時間需要;換句話說,經過表面改性或表面修飾的該PDMS微槽道內表面,其改性之后或曰修飾之后所形成的表面狀態(tài)并不能持久,而是很快地自動趨于或曰變回表面改性之前的表面狀態(tài),在較短的時間里就回到那種原本的強烈疏水的表面狀態(tài),那么,試想,這樣的微流控芯片能夠大量制作、大量儲存、廣泛推廣嗎,答案很明顯,那就是,不可能。這個PDMS材料上的微槽道,不做表面修飾的話,類似于水溶液的極性溶液微細液流無法泵送通過,芯片也就沒法使用;而如果做了表面修飾,又無法持久保持其修飾之后的狀態(tài),還是同樣無法推廣應用。

那么,如何做到既能夠利用廉價的PDMS材料來制作基片,而又能夠解除所述微槽道內表面修飾狀態(tài)無法持久、芯片無法大量制作、大量儲備進而廣泛推廣這樣一個令本領域眾多專業(yè)人員長期糾結的困擾,就是一個明擺著的其技術障礙不可小覷的高難度問題。

該高難度問題已經存在很多個年頭了,迄今為止,尚未得到妥善解決。

其二,未經表面修飾的PDMS材料,上文已經述及,其表面強烈疏水,這種強烈疏水的材料表面并且還有另一個問題,那就是,這種強烈疏水的PDMS表面會吸附生物大分子,并且,這些被吸附的生物大分子還會進一步地在PDMS表面上更深一步的沉陷,漸陷漸深,直至沉陷入到PDMS基片的體相之內,其實,這種過程,部分地也是由于PDMS材料體相內部聚合物分子具有向表面擴散、遷移運動所導致;這種情況,也可以從另一個角度來解釋,即,持續(xù)不斷地由PDMS體相內部向其表面擴散、遷移的那些聚合物分子,其運動的結果,是逐漸地將那些已經被表面吸附的生物大分子卷入PDMS基片的體相之內,簡單地說,這些被吸附的生物大分子就是被PDMS基片體相吞沒了;那么,這種PDMS基片體相吞沒生物大分子的現象,其所造成的影響,必然是導致涉及生物大分子的各類實驗測試數據的嚴重偏差。

如上所述,PDMS基片的問題是,它不但表面吸附生物大分子,而且吞沒生物大分子,這樣一來,作為實驗測試對象的生物大分子其消失不會因為表面飽和吸附而停止,而是,不 斷被吸附,還不斷地被吞沒。

關于PDMS基片在相關實驗測試過程中其體相不斷吞沒測試相關生物大分子的現象,另一種解釋是說,PDMS體相內存在大量的微小氣孔,相關生物大分子被表面吸附之后,沉陷進入這些微小氣孔,進而被吞沒;然而,本案發(fā)明人認為,那些能夠容許微小尺度的空氣分子擠入其間的所述微小氣孔,不等于說它們也能直接容許相對大尺度的生物大分子進入,兩者在尺度上差別巨大,不可一概而論。撇開解釋,無論怎樣,作為相關測試分析對象的生物大分子被PDMS基片微槽道內表面吸附,進而不斷被PDMS基片體相所吞沒,這是已知客觀存在的現象。

為了阻止這種PDMS基片體相對于生物大分子的吞沒作用,可以從遏制PDMS表面對生物大分子的吸附來著手解決,辦法就是針對該PDMS材料表面進行化學修飾改性,對于以PDMS為基片材料的情況來講,就是對所述的微槽道部分的表面進行化學修飾改性,經過化學修飾改性的所述微槽道內表面,能夠遏制其對生物大分子的吸附,進而避免生物大分子被PDMS基片體相所吞沒;但是,還是那個老問題,那就是,PDMS材料表面上的化學修飾改性之后的表面狀態(tài)無法持久保持,該PDMS基片體相內部的聚合物分子其自動向表面擴散、遷移的過程,會很快地將那個經過表面化學修飾改性的微槽道內表面狀態(tài)變回原本的強烈疏水并且強烈吸附生物大分子的狀態(tài),換句話說,無論該領域專業(yè)人員們怎樣折騰,該PDMS基片其微槽道內表面總是快速地向強烈疏水表面狀態(tài)演變。

那么,如何既能夠獲得PDMS材料價格極其低廉、基片制作極其簡易的好處,又能夠達成長期遏制該PDMS基片微槽道內表面對生物大分子的吸附進程,進而阻止PDMS基片體相對生物大分子的吞沒作用,使得相關芯片制成品能夠維持一個足夠長時間的、合理的保質期,就是一個十分棘手的難題。該難題如同上文述及的另一個難題一樣,同樣令本領域眾多專業(yè)人員長期糾結、困擾,該難題同樣是一個明擺著的其技術障礙不可小覷的高難度問題。該難題也已經存在很多個年頭了,迄今為止,也尚未得到妥善解決。



技術實現要素:

本發(fā)明所要解決的技術問題是,提供一個一攬子的解決方案,同時解決上文述及的兩個難題。

本發(fā)明通過如下方案解決所述技術問題,該方案提供的裝置是一種以聚二甲基硅氧烷作為基片材質的微流控芯片裝置,該裝置的結構包括微流控芯片,該微流控芯片的結構包括相互貼合裝設在一起的基片和蓋片,該微流控芯片其試樣液流進樣端與該試樣液流流動的終端相互遠離,該進樣端與該終端之間的距離介于3厘米與10厘米之間,重點是,該基片其材質是聚二甲基硅氧烷材質,該基片其表面是原生形態(tài)的表面,該原生形態(tài)的表面其意思指的是沒有經過任何表面化學修飾或任何表面化學改性的該材質的原生形態(tài)的表面,該裝置的 結構還包括合頁式夾具,該合頁式夾具其外形輪廓形似合頁,該合頁式夾具由相互鉸接在一起的兩個頁片以及貫穿該兩個頁片的一個緊固螺絲以及一個與該緊固螺絲匹配并與該緊固螺絲套接在一起的用于手動緊固及手動松脫的螺帽構成,該合頁式夾具的兩個頁片各以其末梢相互靠攏并夾持該微流控芯片,所述末梢定位在該微流控芯片的鄰近所述終端的結構位置上,至少在其中的一個所述頁片上貼附固定裝設有微型超聲波換能器,以及,高頻振蕩電訊號傳輸電纜,該高頻振蕩電訊號傳輸電纜的一端與該微型超聲波換能器連接在一起;該合頁式夾具提供了一個方便該裝置拆解的功能;該微型超聲波換能器其主要功能是在微流控芯片實際進樣測試時,利用其所發(fā)射的超聲波來降低試樣溶液與該微流控芯片其內部通道的內壁之間的界面張力,使其能夠相容,并且,利用所述進樣端以及所述終端與該微型超聲波換能器裝設位置之間的距離差異以及其所感受到的超聲波強度上的差異,誘導形成所述進樣端其界面張力與所述終端其界面張力之間的差異,該微流控芯片該兩端之間的界面張力差異會在該微流控芯片的該兩端之間形成壓力差異,該壓力差異會驅動試樣溶液向所述終端流動;該微型超聲波換能器其功能還包括以其所發(fā)射的超聲波遏止試樣中所含有的生物大分子其在該微流控芯片其內部通道內表面上的吸附,進而遏止該聚二甲基硅氧烷材質的基片其體相對該生物大分子的吞沒作用;柔軟并具彈性的該聚二甲基硅氧烷材質的基片其功能包括以其對超聲波強烈吸收的性質,對超聲波進行強烈吸收,并藉此在該微流控芯片該終端到該進樣端之間的有限的短距離之內實現超聲波強度的快速遞減。

當然也可以在兩個所述頁片上都裝設所述的微型超聲波換能器;但是,僅裝設一個微型超聲波換能器已經足夠應付使用了。

合頁一詞其本身的技術含義是公知的。

僅就超聲波換能器一詞其本身的技術含義對于超聲波技術領域的專業(yè)人員來說,是公知的。

各種尺寸、各種形狀的超聲波換能器均有市售;市售的微型超聲波換能器其尺寸可以小到僅以毫米計算的量級。

僅就微型超聲波換能器其在一般工業(yè)應用對象固態(tài)物體表面上的固定技術其本身而言,對于超聲波技術領域的專業(yè)人員來說,是已知的一般技術。本案不對此展開贅言。

僅就裸的PDMS基片其本身的微槽道模壓或刻蝕技術來說,是極簡單的已知的技術;同樣地,在裸的PDMS基片上開孔洞的技術更是已知的簡單技術。本案亦不對此展開贅言。

所涉高頻振蕩電訊號傳輸電纜其各種規(guī)格的工業(yè)產品市場均有售。

該裝置的結構還可以包括高頻振蕩電訊號發(fā)生器;所述高頻振蕩電訊號傳輸電纜其另一端可以與該高頻振蕩電訊號發(fā)生器連接。

所涉高頻振蕩電訊號發(fā)生器其本身的技術,對于超聲波技術領域的專業(yè)人員來說,是簡單的和公知的;所述高頻振蕩電訊號發(fā)生器可以向超聲波儀器專業(yè)廠家定制。

該微型超聲波換能器其額定超聲波發(fā)射功率的優(yōu)選范圍是介于2毫瓦與9000毫瓦之間;該微型超聲波換能器其在運行時所發(fā)射的超聲波的頻率的優(yōu)選范圍是介于100KHz與12MHz之間。

本案裝置當然還可以進一步包括一些附件,所述附件例如能夠與微流控芯片配合使用的電學或光學檢測設備。所述電學、光學等等與微流控芯片配合使用的設備,可以參見所述專著。

芯片結構中的所述蓋片,其材質可以允許是任何的電絕緣性材質,例如:聚丙烯、玻璃、聚甲基丙烯酸甲酯、聚二甲基硅氧烷,等等,為了做出更小尺寸的微流控芯片,比如做成長度僅2.0厘米到3.0厘米的超小尺寸的微流控芯片,并在該極短的距離內實現對超聲波的極快速衰減,可以優(yōu)選聚二甲基硅氧烷來作為蓋片。當然,在大尺寸的微流控芯片上選擇使用聚二甲基硅氧烷來作為所述蓋片,也是本案技術方案所允許的。

所述蓋片及基片其厚度可以允許是任意設定的便于裝配的厚度,推薦的厚度或曰優(yōu)選的厚度是介于1.0毫米與5.0毫米之間。較小的厚度有利于節(jié)省材料。

本發(fā)明的優(yōu)點是,在所述微流控芯片的所述終端其鄰近位置定位所述合頁式夾具,以該合頁式夾具其頁片上所貼附安裝的微型超聲波換能器,利用其所發(fā)射的低功率、高頻頻段的超聲波,使得未經過表面化學改性或表面化學修飾的強烈疏水的該微流控芯片內部管道其管壁與測試對象水溶液之間的相容性大幅增加,這為試樣液流的通過提供了一個現實可能性;同時,利用聚二甲基硅氧烷基片其對超聲波的強烈吸收能力,在比較短的距離內,也就是,從所述終端到所述進樣端之間的僅數厘米尺度的很短的距離內,達成超聲波強度的快速遞減,藉此在該微流控芯片的所述兩端造成所述界面張力的差異,進而,利用該兩端之間的界面張力的差異其所形成的該兩端之間的壓力差異,驅動試樣液流在這樣一種原本強烈疏水的毛細管通道內向所述終端方向流動。藉由本案液流驅動方案,完全無須對該聚二甲基硅氧烷材質的基片及其內部管道進行任何的表面化學修飾或化學改性,完全免除了該表面化學修飾或化學改性的麻煩程序;并且完全免除了傳統(tǒng)意義上的微泵之類的設備;另一方面,該低功率、高頻頻段的超聲波,還能夠遏制試樣中的生物大分子在該無修飾的裸的聚二甲基硅氧烷基片其管道內表面上的吸附,進而遏制該聚二甲基硅氧烷基片其體相對所述生物大分子的吞沒作用;由于所述的吸附作用以及所述的吞沒作用被有效地遏制,因此,相關測試結果將更加能夠客觀地反映實際情況。

由于不需要進行針對該聚二甲基硅氧烷基片其相關表面的表面化學修飾或表面化學改性操作,因此,這個表面化學修飾層或表面化學改性層根本就不需要存在,那么,該聚二甲 基硅氧烷基片其體相內部聚合物分子不斷自動向表面擴散、遷移其所導致的對所述表面化學修飾層或表面化學改性層的破壞性影響也就不存在了。

本案的技術方案一攬子地化解了上文述及的與聚二甲基硅氧烷基片其應用相關的一系列技術難題?;诒景阜桨?,該種十分廉價的聚二甲基硅氧烷材料便有可能在該微流控芯片制備、生產、應用等等領域發(fā)揮更大的作用。

本案結構中的該合頁式夾具其頁片上固定裝設了所述微型超聲波換能器,該結構提供了一個方便該裝置拆解的功能,如此,該合頁式夾具連同其頁片上所附的微型超聲波換能器便能夠方便地與該微流控芯片相互脫離,那么,該部分可自由脫離的構件便能夠良性循環(huán)地重復使用許多次;該結構特征有利于節(jié)約該裝置的使用成本。

附圖說明

圖1是本案該微流控芯片裝置其大略的外觀側視圖。

圖中,1是合頁式夾具,2標示鉸接機構所在位置,3是緊固螺絲,4是高頻振蕩電訊號傳輸電纜,5是微型超聲波換能器,6、11分別是結構位置不同的兩個頁片,7是蓋片,8是基片,9是進樣端,10是終端,12是螺帽;圖例中的該合頁式夾具結構僅是示意的圖例結構,實際該合頁式夾具其結構不限于該圖例合頁式夾具結構;圖例中的箭頭符號標示該微流控芯片其在實際運行時,受兩端壓力差驅動,其試樣液流的流動方向。

具體實施方式

在圖1所展示的本案該實施例中,該裝置的結構包括微流控芯片,該微流控芯片的結構包括相互貼合裝設在一起的基片8和蓋片7,該微流控芯片其試樣液流進樣端9與該試樣液流流動的終端10相互遠離,該進樣端9與該終端10之間的距離介于3厘米與10厘米之間,重點是,該基片8其材質是聚二甲基硅氧烷材質,該基片8其表面是原生形態(tài)的表面,該原生形態(tài)的表面其意思指的是沒有經過任何表面化學修飾或任何表面化學改性的該材質的原生形態(tài)的表面,該裝置的結構還包括合頁式夾具1,該合頁式夾具1其外形輪廓形似合頁,該合頁式夾具1由相互鉸接在一起的兩個頁片6、11以及貫穿該兩個頁片6、11的一個緊固螺絲3以及一個與該緊固螺絲3匹配并與該緊固螺絲3套接在一起的用于手動緊固及手動松脫的螺帽12構成,該螺帽12在本例中采用了比較容易手動操作的蝶形螺帽,蝶形螺帽市場有售,該合頁式夾具1的兩個頁片6、11各以其末梢相互靠攏并夾持該微流控芯片,所述末梢定位在該微流控芯片的鄰近所述終端10的結構位置上,至少在其中的一個所述頁片上貼附固定裝設有微型超聲波換能器,本例中,該微型超聲波換能器5是貼附固定在頁片6上,以及,高頻振蕩電訊號傳輸電纜4,該高頻振蕩電訊號傳輸電纜4的一端與該微型超聲波換能器5連接在一起;該合頁式夾具1提供了一個方便該裝置拆解的功能;該微型超聲波換能器5其主要功能是在微流控芯片實際進樣測試時,利用其所發(fā)射的超聲波來降低 試樣溶液與該微流控芯片其內部通道的內壁之間的界面張力,使其能夠相容,并且,利用所述進樣端9以及所述終端10與該微型超聲波換能器5裝設位置之間的距離差異以及其所感受到的超聲波強度上的差異,誘導形成所述進樣端9其界面張力與所述終端10其界面張力之間的差異,該微流控芯片該兩端9、10之間的界面張力差異會在該微流控芯片的該兩端9、10之間形成壓力差異,該壓力差異會驅動試樣溶液向所述終端10方向流動;該微型超聲波換能器5其功能還包括以其所發(fā)射的超聲波遏止試樣中所含有的生物大分子其在該微流控芯片其內部通道內表面上的吸附,進而遏止該聚二甲基硅氧烷材質的基片8其體相對該生物大分子的吞沒作用;柔軟并具彈性的該聚二甲基硅氧烷材質的基片8其功能包括以其對超聲波強烈吸收的性質,對超聲波進行強烈吸收,并藉此在該微流控芯片該終端10到該進樣端9之間的有限的短距離之內實現超聲波強度的快速遞減。

圖例中的箭頭符號標示該微流控芯片其在實際運行時,受兩端壓力差驅動,其試樣液流的流動方向。

圖1沒有繪出所述高頻振蕩電訊號發(fā)生器等附屬件。

所述合頁式夾具其主體可以利用市售的合頁進行簡單改制;也可以向五金加工廠定制。

所涉微型超聲波換能器5市場有售;也可以向超聲波換能器廠家定制。

所涉高頻振蕩電訊號傳輸電纜4市場有售;也可以向超聲波換能器廠家或電纜專業(yè)廠家定制。

所涉高頻振蕩電訊號發(fā)生器市場有接近需要的產品可購;也可以向相關廠家定制。

本案所涉該微流控芯片其內部通道是疏水的毛細管形態(tài)的管道。

當前第1頁1 2 3 
網友詢問留言 已有0條留言
  • 還沒有人留言評論。精彩留言會獲得點贊!
1