本發(fā)明涉及一種采取新的流體驅(qū)動方式的微流控芯片裝置,屬于分析測試領(lǐng)域。
背景技術(shù):
關(guān)于微流控技術(shù)其本身的整體概貌而言,可以參見著名微流控專家林炳承先生不久前出的專著“圖解微流控芯片實(shí)驗(yàn)室”,該專著已經(jīng)由科學(xué)出版社出版,該專著對于微流控技術(shù)的過去、現(xiàn)在,以及,未來展望等等方面,都有著詳盡的、深入到具體細(xì)節(jié)的長篇論述。
微流控芯片經(jīng)常應(yīng)用到的領(lǐng)域包括對含有生物大分子的試樣溶液進(jìn)行各種分析、檢測。
微流控芯片的基本架構(gòu),包括刻蝕有微小液流通道的基片以及與之貼合在一起的蓋片,所述基片上的微小液流通道,在裝配上蓋片之前,表觀上看就是一些微槽道,要等到在其上覆蓋了蓋片之后,才真正閉合形成所述微小液流通道,該微槽道的槽道內(nèi)表面連同包繞著該微槽道的那部分蓋片一起構(gòu)成所述的微小液流通道;那么,顯然,裝配完成了之后的該微小液流通道,它的內(nèi)表面面積的主要部分是那個微槽道的內(nèi)表面面積,換句話說,該微槽道內(nèi)表面的狀態(tài)或性質(zhì)基本上決定了該微小液流通道的整體狀態(tài)或性質(zhì);因此說,這個構(gòu)建在基片上的微槽道的內(nèi)表面狀態(tài)或內(nèi)表面性質(zhì)是關(guān)鍵因素;原則上講,任何的能夠保持或基本保持其固體形態(tài)的材料,都能夠用來制作基片及蓋片,比如,能夠用作基片及蓋片的材料可以是單晶硅片、石英片、玻璃片、高聚物如聚二甲基硅氧烷、聚甲基丙烯酸甲酯、聚碳酸酯等等;當(dāng)然,基片的選材和蓋片的選材可以相同,也可以不相同;從材料耗費(fèi)、制作難度以及應(yīng)用普及前景等等方面來看,這些材料之間存在不小差異,尤其是那個基片的選材,影響較大。
在各種基片制作材料中,聚二甲基硅氧烷,即PDMS,相對而言十分容易成型,在這樣的基片上制作微槽道極其簡單,并且該材料成本低廉,以該聚二甲基硅氧烷材料制作基片,在其上壓制或刻蝕微槽道,并與玻璃或聚丙烯或其它塑料片等廉價材料制作的蓋片相配合,貌似是一種比較理想的選擇;當(dāng)然,蓋片材料也可以選擇使用廉價的聚二甲基硅氧烷材料:那么,這種基片選材為聚二甲基硅氧烷材料的方案,材料極便宜,制作極簡易,看似也應(yīng)當(dāng)極易于普及、推廣。
但是,事情并非如此簡單。
其一,這個聚二甲基硅氧烷材料,即縮寫字母PDMS所指代的材料,其本身是一種強(qiáng)烈疏水的材料,在這一材料上構(gòu)建微槽道,如果不進(jìn)行針對該微槽道表面的改性操作,那么,整體裝配完成之后,即蓋上蓋片后,因結(jié)構(gòu)中的所述微槽道其內(nèi)表面占據(jù)了大部分的液流通 道的內(nèi)表面,那么,該P(yáng)DMS微槽道內(nèi)表面其強(qiáng)烈的疏水特性,是決定性因素,它會使得類似于水溶液的極性液體微細(xì)液流的通過變得十分困難,其流動阻力之大,甚至一般的微泵都難以推動,當(dāng)然,如果蓋片也選擇使用該P(yáng)DMS材料,那么,問題基本上一樣,大同小異;因此,在現(xiàn)有技術(shù)之中,特別針對該P(yáng)DMS材料上的微槽道內(nèi)表面進(jìn)行改性修飾,是必須的操作;那么,這個針對PDMS微槽道內(nèi)表面的改性操作很麻煩嗎?那倒也不是這個問題,構(gòu)成嚴(yán)重技術(shù)困擾的,是另一個問題:這個PDMS材料基片其體相內(nèi)部的PDMS聚合物分子具有自動向表面擴(kuò)散、遷移的特性,這種基片體相內(nèi)部PDMS聚合物分子自動向表面擴(kuò)散、遷移的特性,將使得經(jīng)過表面改性修飾的那個微槽道其內(nèi)表面的改性之后的狀態(tài)并不能維持足夠長的時間,那個經(jīng)表面改性之后的微槽道其內(nèi)表面狀態(tài)的維持時間大致僅夠完成實(shí)驗(yàn)室內(nèi)部測試實(shí)驗(yàn)的時間需要;換句話說,經(jīng)過表面改性或表面修飾的該P(yáng)DMS微槽道內(nèi)表面,其改性之后或日修飾之后所形成的表面狀態(tài)并不能持久,而是很快地自動趨于或日變回表面改性之前的表面狀態(tài),在較短的時間里就回到那種原本的強(qiáng)烈疏水的表面狀態(tài),那么,試想,這樣的微流控芯片能夠大量制作、大量儲存、廣泛推廣嗎,答案很明顯,那就是,不可能。這個PDMS材料上的微槽道,不做表面修飾的話,類似于水溶液的極性溶液微細(xì)液流無法泵送通過,芯片也就沒法使用;而如果做了表面修飾,又無法持久保持其修飾之后的狀態(tài),還是同樣無法推廣應(yīng)用。
那么,如何做到既能夠利用廉價的PDMS材料來制作基片,而又能夠解除所述微槽道內(nèi)表面修飾狀態(tài)無法持久、芯片無法大量制作、大量儲備進(jìn)而廣泛推廣這樣一個令本領(lǐng)域眾多專業(yè)人員長期糾結(jié)的困擾,就是一個明擺著的其技術(shù)障礙不可小覷的高難度問題。
該高難度問題已經(jīng)存在很多個年頭了,迄今為止,尚未得到妥善解決。
其二,未經(jīng)表面修飾的PDMS材料,上文已經(jīng)述及,其表面強(qiáng)烈疏水,這種強(qiáng)烈疏水的材料表面并且還有另一個問題,那就是,這種強(qiáng)烈疏水的PDMS表面會吸附生物大分子,并且,這些被吸附的生物大分子還會進(jìn)一步地在PDMS表面上更深一步的沉陷,漸陷漸深,直至沉陷入到PDMS基片的體相之內(nèi),其實(shí),這種過程,部分地也是由于PDMS材料體相內(nèi)部聚合物分子具有向表面擴(kuò)散、遷移運(yùn)動所導(dǎo)致;這種情況,也可以從另一個角度來解釋,即,持續(xù)不斷地由PDMS體相內(nèi)部向其表面擴(kuò)散、遷移的那些聚合物分子,其運(yùn)動的結(jié)果,是逐漸地將那些已經(jīng)被表面吸附的生物大分子卷入PDMS基片的體相之內(nèi),簡單地說,這些被吸附的生物大分子就是被PDMS基片體相吞沒了;那么,這種PDMS基片體相吞沒生物大分子的現(xiàn)象,其所造成的影響,必然是導(dǎo)致涉及生物大分子的各類實(shí)驗(yàn)測試數(shù)據(jù)的嚴(yán)重偏差。
如上所述,PDMS基片的問題是,它不但表面吸附生物大分子,而且吞沒生物大分子,這樣一來,作為實(shí)驗(yàn)測試對象的生物大分子其消失不會因?yàn)楸砻骘柡臀蕉V?,而是,不斷被吸附,還不斷地被吞沒。
關(guān)于PDMS基片在相關(guān)實(shí)驗(yàn)測試過程中其體相不斷吞沒測試相關(guān)生物大分子的現(xiàn)象,另一種解釋是說,PDMS體相內(nèi)存在大量的微小氣孔,相關(guān)生物大分子被表面吸附之后,沉陷進(jìn)入這些微小氣孔,進(jìn)而被吞沒;然而,本案發(fā)明人認(rèn)為,那些能夠容許微小尺度的空氣分子擠入其間的所述微小氣孔,不等于說它們也能直接容許相對大尺度的生物大分子進(jìn)入,兩者在尺度上差別巨大,不可一概而論。撇開解釋,無論怎樣,作為相關(guān)測試分析對象的生物大分子被PDMS基片微槽道內(nèi)表面吸附,進(jìn)而不斷被PDMS基片體相所吞沒,這是已知客觀存在的現(xiàn)象。
為了阻止這種PDMS基片體相對于生物大分子的吞沒作用,可以從遏制PDMS表面對生物大分子的吸附來著手解決,辦法就是針對該P(yáng)DMS材料表面進(jìn)行化學(xué)修飾改性,對于以PDMS為基片材料的情況來講,就是對所述的微槽道部分的表面進(jìn)行化學(xué)修飾改性,經(jīng)過化學(xué)修飾改性的所述微槽道內(nèi)表面,能夠遏制其對生物大分子的吸附,進(jìn)而避免生物大分子被PDMS基片體相所吞沒;但是,還是那個老問題,那就是,PDMS材料表面上的化學(xué)修飾改性之后的表面狀態(tài)無法持久保持,該P(yáng)DMS基片體相內(nèi)部的聚合物分子其自動向表面擴(kuò)散、遷移的過程,會很快地將那個經(jīng)過表面化學(xué)修飾改性的微槽道內(nèi)表面狀態(tài)變回原本的強(qiáng)烈疏水并且強(qiáng)烈吸附生物大分子的狀態(tài),換句話說,無論該領(lǐng)域?qū)I(yè)人員們怎樣折騰,該P(yáng)DMS基片其微槽道內(nèi)表面總是快速地向強(qiáng)烈疏水表面狀態(tài)演變。
那么,如何既能夠獲得PDMS材料價格極其低廉、基片制作極其簡易的好處,又能夠達(dá)成長期遏制該P(yáng)DMS基片微槽道內(nèi)表面對生物大分子的吸附進(jìn)程,進(jìn)而阻止PDMS基片體相對生物大分子的吞沒作用,使得相關(guān)芯片制成品能夠維持一個足夠長時間的、合理的保質(zhì)期,就是一個十分棘手的難題。該難題如同上文述及的另一個難題一樣,同樣令本領(lǐng)域眾多專業(yè)人員長期糾結(jié)、困擾,該難題同樣是一個明擺著的其技術(shù)障礙不可小覷的高難度問題。該難題也已經(jīng)存在很多個年頭了,迄今為止,也尚未得到妥善解決。
技術(shù)實(shí)現(xiàn)要素:
本發(fā)明所要解決的技術(shù)問題是,提供一個一攬子的解決方案,同時解決上文述及的兩個難題。
本發(fā)明通過如下方案解決所述技術(shù)問題,該方案提供的裝置是一種采取新的流體驅(qū)動方式的微流控芯片裝置,該裝置的結(jié)構(gòu)包括微流控芯片,該微流控芯片的結(jié)構(gòu)包括相互貼合裝設(shè)在一起的基片和蓋片,該微流控芯片其試樣液流進(jìn)樣端與該試樣液流流動的終端相互遠(yuǎn)離,該進(jìn)樣端與該終端之間的距離介于3厘米與10厘米之間,重點(diǎn)是,該基片其材質(zhì)是聚二甲基硅氧烷材質(zhì),該基片其表面是原生形態(tài)的表面,該原生形態(tài)的表面其意思指的是沒有經(jīng)過任何表面化學(xué)修飾或任何表面化學(xué)改性的該材質(zhì)的原生形態(tài)的表面,該裝置的結(jié)構(gòu)還包括彈力夾,該彈力夾的兩個相向的夾持臂咬合定位在該微流控芯片的鄰近所述終端的位置, 至少在其中的一個所述夾持臂上貼附固定裝設(shè)有微型超聲波換能器,以及,高頻振蕩電訊號傳輸電纜,該高頻振蕩電訊號傳輸電纜的一端與該微型超聲波換能器連接在一起;該彈力夾提供了一個方便該裝置拆解的功能;該微型超聲波換能器其主要功能是在微流控芯片實(shí)際進(jìn)樣測試時,利用其所發(fā)射的超聲波來降低試樣溶液與該微流控芯片其內(nèi)部通道的內(nèi)壁之間的界面張力,使其能夠相容,并且,利用所述進(jìn)樣端以及所述終端與該微型超聲波換能器裝設(shè)位置之間的距離差異以及其所感受到的超聲波強(qiáng)度上的差異,誘導(dǎo)形成所述進(jìn)樣端其界面張力與所述終端其界面張力之間的差異,該微流控芯片該兩端之間的界面張力差異會在該微流控芯片的該兩端之間形成壓力差異,該壓力差異會驅(qū)動試樣溶液向所述終端流動;該微型超聲波換能器其功能還包括以其所發(fā)射的超聲波遏止試樣中所含有的生物大分子其在該微流控芯片其內(nèi)部通道內(nèi)表面上的吸附,進(jìn)而遏止該聚二甲基硅氧烷材質(zhì)的基片其體相對該生物大分子的吞沒作用;柔軟并具彈性的該聚二甲基硅氧烷材質(zhì)的基片其功能包括以其對超聲波強(qiáng)烈吸收的性質(zhì),對超聲波進(jìn)行強(qiáng)烈吸收,并藉此在該微流控芯片該終端到該進(jìn)樣端之間的有限的短距離之內(nèi)實(shí)現(xiàn)超聲波強(qiáng)度的快速遞減。
該彈力夾一詞其本身的技術(shù)含義是公知的。
僅就超聲波換能器一詞其本身的技術(shù)含義對于超聲波技術(shù)領(lǐng)域的專業(yè)人員來說,是公知的。
各種尺寸、各種形狀的超聲波換能器均有市售;市售的微型超聲波換能器其尺寸可以小到僅以毫米計算的量級。
僅就微型超聲波換能器其在一般工業(yè)應(yīng)用對象固態(tài)物體表面上的固定技術(shù)其本身而言,對于超聲波技術(shù)領(lǐng)域的專業(yè)人員來說,是已知的一般技術(shù)。本案不對此展開贅言。
僅就裸的PDMS基片其本身的微槽道模壓或刻蝕技術(shù)來說,是極簡單的已知的技術(shù);同樣地,在裸的PDMS基片上開孔洞的技術(shù)更是已知的簡單技術(shù)。本案亦不對此展開贅言。
所涉高頻振蕩電訊號傳輸電纜其各種規(guī)格的工業(yè)產(chǎn)品市場均有售。
該裝置的結(jié)構(gòu)還可以包括高頻振蕩電訊號發(fā)生器;所述高頻振蕩電訊號傳輸電纜其另一端可以與該高頻振蕩電訊號發(fā)生器連接。
所涉高頻振蕩電訊號發(fā)生器其本身的技術(shù),對于超聲波技術(shù)領(lǐng)域的專業(yè)人員來說,是簡單的和公知的;所述高頻振蕩電訊號發(fā)生器可以向超聲波儀器專業(yè)廠家定制。
該微型超聲波換能器其額定超聲波發(fā)射功率的優(yōu)選范圍是介于2毫瓦與9000毫瓦之間;該微型超聲波換能器其在運(yùn)行時所發(fā)射的超聲波的頻率的優(yōu)選范圍是介于100KHz與12MHz之間。
本案裝置當(dāng)然還可以進(jìn)一步包括一些附件,所述附件例如能夠與微流控芯片配合使用的電學(xué)或光學(xué)檢測設(shè)備。所述電學(xué)、光學(xué)等等與微流控芯片配合使用的設(shè)備,可以參見所述專著。
芯片結(jié)構(gòu)中的所述蓋片,其材質(zhì)可以允許是任何的電絕緣性材質(zhì),例如:聚丙烯、玻璃、聚甲基丙烯酸甲酯、聚二甲基硅氧烷,等等,為了做出更小尺寸的微流控芯片,比如做成長度僅2.0厘米到3.0厘米的超小尺寸的微流控芯片,并在該極短的距離內(nèi)實(shí)現(xiàn)對超聲波的極快速衰減,可以優(yōu)選聚二甲基硅氧烷來作為蓋片。當(dāng)然,在大尺寸的微流控芯片上選擇使用聚二甲基硅氧烷來作為所述蓋片,也是本案技術(shù)方案所允許的。
所述蓋片及基片其厚度可以允許是任意設(shè)定的便于裝配的厚度,推薦的厚度或日優(yōu)選的厚度是介于1.0毫米與5.0毫米之間。較小的厚度有利于節(jié)省材料。
本發(fā)明的優(yōu)點(diǎn)是,在所述微流控芯片的所述終端其鄰近位置咬合定位所述彈力夾,以該彈力夾的夾持臂上所貼附安裝的微型超聲波換能器,利用該微型超聲波換能器其所發(fā)射的低功率、高頻頻段的超聲波,使得未經(jīng)過表面化學(xué)改性的強(qiáng)烈疏水的該微流控芯片內(nèi)部管道其管壁與測試對象水溶液之間的相容性大幅增加,這為試樣液流的通過提供了一個現(xiàn)實(shí)可能性;同時,利用聚二甲基硅氧烷基片其對超聲波的強(qiáng)烈吸收能力,在比較短的距離內(nèi),也就是,從所述終端到所述進(jìn)樣端之間的僅數(shù)厘米尺度的很短的距離內(nèi),達(dá)成超聲波強(qiáng)度的快速遞減,藉此在該微流控芯片的所述兩端造成所述界面張力的差異,進(jìn)而,利用該兩端之間的界面張力的差異其所形成的該兩端之間的壓力差異,驅(qū)動試樣液流在微流控芯片中原本強(qiáng)烈疏水的毛細(xì)管通道內(nèi)向所述終端方向流動。藉由本案液流驅(qū)動方案,完全無須對該聚二甲基硅氧烷材質(zhì)的基片及其內(nèi)部管道進(jìn)行任何的表面化學(xué)修飾或表面化學(xué)改性,完全免除了該表面化學(xué)修飾或表面化學(xué)改性的麻煩程序;并且完全免除了傳統(tǒng)意義上的微泵之類的設(shè)備;另一方面,該低功率、高頻頻段的超聲波,還能夠遏制試樣中的生物大分子在該無修飾的裸的聚二甲基硅氧烷基片其管道內(nèi)表面上的吸附,進(jìn)而遏制該聚二甲基硅氧烷基片其體相對所述生物大分子的吞沒作用;由于所述的吸附作用以及所述的吞沒作用被有效地遏制,因此,相關(guān)測試結(jié)果將更加能夠客觀地反映實(shí)際情況。
由于不需要進(jìn)行針對該聚二甲基硅氧烷基片其相關(guān)表面的表面化學(xué)修飾或表面化學(xué)改性操作,因此,這個表面化學(xué)修飾層或表面化學(xué)改性層根本就不需要存在,那么,該聚二甲基硅氧烷基片其體相內(nèi)部聚合物分子不斷自動向表面擴(kuò)散、遷移其所導(dǎo)致的對所述表面化學(xué)修飾層或表面化學(xué)改性層的破壞性影響也就不存在了。
本案的技術(shù)方案一攬子地化解了上文述及的與聚二甲基硅氧烷基片其應(yīng)用相關(guān)的一系列技術(shù)難題?;诒景阜桨?,該種十分廉價的聚二甲基硅氧烷材料便有可能在該微流控芯片制備、生產(chǎn)、應(yīng)用等等領(lǐng)域發(fā)揮更大的作用。
本案結(jié)構(gòu)中的該彈力夾其夾持臂上固定裝設(shè)了所述微型超聲波換能器,該結(jié)構(gòu)提供了一個方便該裝置拆解的功能,如此,該彈力夾連同其上所附的微型超聲波換能器便能夠方便地與該微流控芯片相互脫離,那么,該部分可自由脫離的構(gòu)件便能夠良性循環(huán)地重復(fù)使用許多次;該結(jié)構(gòu)特征有利于節(jié)約該裝置的使用成本。
附圖說明
圖1是本案該裝置其大略的外觀側(cè)視圖。
圖中,1是彈力夾,2、7分別是彈力夾的兩個夾持臂,3是該微流控芯片的所述終端,4是該微流控芯片的所述進(jìn)樣端,5是聚二甲基硅氧烷材質(zhì)的基片,6是蓋片,8是微型超聲波換能器,9是高頻振蕩電訊號傳輸電纜,10是拉力彈簧;圖例中的該彈力夾結(jié)構(gòu)僅是示意的圖例結(jié)構(gòu),實(shí)際彈力夾結(jié)構(gòu)不限于該圖例彈力夾結(jié)構(gòu);圖例中的箭頭符號標(biāo)示該微流控芯片其在實(shí)際運(yùn)行時,受兩端壓力差驅(qū)動,其試樣液流的流動方向。
具體實(shí)施方式
在圖1所展示的本案該實(shí)施例中,該裝置的結(jié)構(gòu)包括微流控芯片,該微流控芯片的結(jié)構(gòu)包括相互貼合裝設(shè)在一起的基片5和蓋片6,該微流控芯片其試樣液流進(jìn)樣端4與該試樣液流流動的終端3相互遠(yuǎn)離,該進(jìn)樣端4與該終端3之間的距離介于3厘米與10厘米之間,重點(diǎn)是,該基片5其材質(zhì)是聚二甲基硅氧烷材質(zhì),該基片5其表面是原生形態(tài)的表面,該原生形態(tài)的表面其意思指的是沒有經(jīng)過任何表面化學(xué)修飾或任何表面化學(xué)改性的該材質(zhì)的原生形態(tài)的表面,該裝置的結(jié)構(gòu)還包括彈力夾1,該彈力夾1的兩個相向的夾持臂2、7咬合定位在該微流控芯片的鄰近所述終端3的位置,至少在其中的一個所述夾持臂上貼附固定裝設(shè)有微型超聲波換能器,本例中,該微型超聲波換能器8被貼附固定在夾持臂7上,以及,高頻振蕩電訊號傳輸電纜9,該高頻振蕩電訊號傳輸電纜9的一端與該微型超聲波換能器8連接在一起;也可以在兩個夾持臂2、7上都分別固定裝設(shè)微型超聲波換能器,但是一般來說,僅在一個夾持臂上安裝微型超聲波換能器就足以應(yīng)付使用需要,該彈力夾1提供了一個方便該裝置拆解的功能;該微型超聲波換能器8其主要功能是在微流控芯片實(shí)際進(jìn)樣測試時,利用其所發(fā)射的超聲波來降低試樣溶液與該微流控芯片其內(nèi)部通道的內(nèi)壁之間的界面張力,使其能夠相容,并且,利用所述進(jìn)樣端4以及所述終端3與該微型超聲波換能器8裝設(shè)位置之間的距離差異以及其所感受到的超聲波強(qiáng)度上的差異,誘導(dǎo)形成所述進(jìn)樣端4其界面張力與所述終端3其界面張力之間的差異,該微流控芯片該兩端3、4之間的界面張力差異會在該微流控芯片的該兩端3、4之間形成壓力差異,該壓力差異會驅(qū)動試樣溶液向所述終端3方向流動;該微型超聲波換能器8其功能還包括以其所發(fā)射的超聲波遏止試樣中所含有的生物大分子其在該微流控芯片其內(nèi)部通道內(nèi)表面上的吸附,進(jìn)而遏止該聚二甲基硅氧烷材質(zhì)的基片5其體相對該生物大分子的吞沒作用;柔軟并具彈性的該聚二甲基硅氧烷材質(zhì)的基 片5其功能包括以其對超聲波強(qiáng)烈吸收的性質(zhì),對超聲波進(jìn)行強(qiáng)烈吸收,并藉此在該微流控芯片該終端3到該進(jìn)樣端4之間的有限的短距離之內(nèi)實(shí)現(xiàn)超聲波強(qiáng)度的快速遞減。
圖例中的箭頭符號標(biāo)示該微流控芯片其在實(shí)際運(yùn)行時,受兩端壓力差驅(qū)動,其試樣液流的流動方向。
圖1沒有繪出所述高頻振蕩電訊號發(fā)生器等附屬件。
所涉彈力夾1市場有售??晒┍景附Y(jié)構(gòu)使用的市售的可供選用的彈力夾結(jié)構(gòu)及造型及尺寸等等,品質(zhì)繁多,具體彈力夾型式可以根據(jù)需要選定。
所涉微型超聲波換能器8市場有售;也可以向超聲波換能器廠家定制。
所涉高頻振蕩電訊號傳輸電纜9市場有售;也可以向超聲波換能器廠家或電纜專業(yè)廠家定制。
所涉高頻振蕩電訊號發(fā)生器市場有接近需要的產(chǎn)品可購;也可以向相關(guān)廠家定制。
本案所涉該微流控芯片其內(nèi)部通道是疏水的毛細(xì)管形態(tài)的管道。