本發(fā)明涉及一種加氫脫硫工藝,具體涉及一種焦化粗苯加氫脫硫工藝。
背景技術(shù):
焦化是煤炭加工的主要方式之一,通常也稱之為煤的高溫干餾,即由適合煉焦的煙煤,適當處理后,在焦爐內(nèi)隔絕空氣加熱到950-1050℃,經(jīng)過干燥、熱解、燒融、粘結(jié)、固化和收縮等階段最終制得焦炭。煉焦過程中析出的揮發(fā)物包括煤氣、焦油、氨和粗苯等化學(xué)產(chǎn)品。另外,焦化過程中得到的煤焦油中也含有一定量的苯等芳烴。
焦化粗苯精制是以焦化粗苯為原料,經(jīng)過物理或者化學(xué)等方法脫除其中含硫、含氮等有害物質(zhì),以便得到可作為原料使用的高純度苯、甲苯、二甲苯等。目前,我國工業(yè)上主要采用酸洗法和加氫脫硫工藝對粗苯進行精制。
催化加氫法作為焦化粗苯化學(xué)脫硫方法,是在臨氫條件下將噻吩轉(zhuǎn)化成硫化氫和相應(yīng)的烷烴而脫除,一般分兩個步驟,第一步:預(yù)加氫反應(yīng),主要用常規(guī)的催化劑脫除焦化粗苯中的不穩(wěn)定物質(zhì),也可以脫除部分含硫物質(zhì);第二步,主加氫反應(yīng),脫除焦化粗苯中噻吩、二硫化碳等主要硫化物和有機氮化物。粗苯加氫工藝根據(jù)催化反應(yīng)溫度分為高溫加氫和低溫加氫兩種工藝。
高溫催化加氫工藝中最典型就是萊托爾法,即Litol法,該工藝是在20世紀60年代由美國胡德利(Hondry)空氣產(chǎn)品公司成功開發(fā)的一種高溫粗苯加氫精制法,后來日本旭化成公司又對其進行了改進,形成了日本Litol高溫、高壓氣相加氫技術(shù)。該法首先將粗苯在預(yù)分餾塔中分離為輕苯和重苯,輕苯經(jīng)高壓泵進入蒸發(fā)器與循環(huán)氫氣混合后,芳烴蒸汽和氫氣混合物從塔頂進入預(yù)反應(yīng)器。該法的加氫條件為:預(yù)反應(yīng)器溫度為230℃,壓力為5.7MPa,催化劑為CoMo催化劑;主反應(yīng)器溫度為壓力為5l0MPa,催化劑為Cr系催化劑。預(yù)反應(yīng)器是在較低溫度下把高溫狀態(tài)下容易聚合的苯乙烯等同系物進行加氫反應(yīng),防止其在主反應(yīng)器內(nèi)聚合,使催化劑活性降低,在兩個主反應(yīng)器內(nèi)完成加氫裂解、脫烷基、脫硫等反應(yīng)。由主反應(yīng)器排出的油氣經(jīng)冷凝冷卻系統(tǒng),分離出的液體為加氫油,分離出的氫氣和低分子烴類脫除H2S后,一部分送往加氫系統(tǒng),一部分送往轉(zhuǎn)化制氫系統(tǒng)制取氫氣。由于Litol工藝可以將苯環(huán)上的烷基脫除,因此純苯產(chǎn)率可以達到114%。
由于Litol法需要在高溫高壓下操作,又有氫脆(在高溫高壓下,氫氣分解的氫原子滲透到鋼材晶粒中,使鋼材晶粒間的原子結(jié)合力降低,從而降低鋼材的延伸率和斷面收縮率)和氫腐蝕(在高溫高壓下,氫分子和氫原子慢慢滲透到鋼材材質(zhì)的缺陷處,聚集成分子缺陷后與周圍含碳化合物發(fā)生加氫反應(yīng)),所以對設(shè)備要求要高,制造難度較大,需要從國外全套引進。20世紀90年代,我國的寶鋼化工一期工程就曾全套引進日本的萊托爾法高溫脫烷基加氫工藝,于1986年投產(chǎn),年處理粗苯5萬t,可以得到純度99.9%、結(jié)晶點5.52℃:、全硫含量低于lppm、噻吩含量小于0.5ppm的特號純苯。河南神馬公司隨后也全套引進了日本的萊托爾法高溫脫烷基加氫工藝。Litol法理論產(chǎn)率91.53%,但從2004年實績來看卻只有88.96%。
低溫加氫法主要包括三個關(guān)鍵單元:焦爐煤氣變壓吸附制純氫(純度大于99.9%);催化加氫精制過程(預(yù)加氫和主加氫);產(chǎn)品提純過程(萃取或萃取蒸餾)。由于在焦化粗苯低溫加氫工藝中主要得到的產(chǎn)品是芳香烴和非芳香烴,工業(yè)上很難直接通過常規(guī)的蒸餾方法將其分離出來,加入一定的萃取劑后(萃取劑要求不與其它組分形成共沸物且沸點較高),可以明顯地改變各組分在其中的溶解度,從而改變它們的相對揮發(fā)度和飽和蒸汽壓,再通過蒸餾的方法就可以達到分離產(chǎn)品的作用,工藝上可以分為萃取蒸餾和液/液萃取。
萃取蒸餾加氫法理論產(chǎn)率為99.41%,但2004年實績來看卻只有98.30%。液/液萃取工藝中最具代表性的就是環(huán)丁砜法,其理論產(chǎn)率也在99%以上。但上述工藝方法得到的純苯含硫量均在0.5ppm左右,這對芳烴產(chǎn)品的使用產(chǎn)生很大限制
因此如何提供一種加氫脫硫工藝,能有效將焦化粗苯產(chǎn)品的硫含量控制在0.1ppm以下,以滿足其應(yīng)用標準,是本領(lǐng)域面臨的一個難題。
技術(shù)實現(xiàn)要素:
本發(fā)明的目的在于提出一種焦化粗苯加氫脫硫工藝,該工藝可以將焦化粗苯中的總硫含量降低到0.1ppm以下,最低到0.05ppm,以滿足產(chǎn)品的應(yīng)用要求。
為達此目的,本發(fā)明采用以下技術(shù)方案:
一種焦化粗苯加氫脫硫工藝,焦化粗苯與氫氣混合物從塔頂進入預(yù)反應(yīng)器,預(yù)反應(yīng)器中裝填有NiMo催化劑,其反應(yīng)溫度為220-230℃,加氫壓力為3.2-3.8MPa,其產(chǎn)物隨后進入固定床反應(yīng)器,所述固定床反應(yīng)器中裝填有加氫脫硫催化劑,所述催化劑包括載體和活性組分。
所述載體為MSU-G、SBA-15和HMS的復(fù)合物或混合物;
所述活性組分為氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的混合物。
所述的催化劑還含有催化助劑,所述催化助劑為TiO2、CeO2、V2O5和NbOPO4的混合物。
所述固定床反應(yīng)器的反應(yīng)條件為:反應(yīng)溫度為320-380℃,氫氣壓力3.0-3.6MPa,氫油體積比500-800,體積空速1.5-2h-1。
固定床加氫反應(yīng)后的產(chǎn)物進入萃取蒸餾單元,得到芳烴。
經(jīng)過檢測,得到的芳烴中全硫含量低于0.1ppm,產(chǎn)品的純度也大于99.9%。
需要說明的是,本發(fā)明采用的焦化粗苯加氫脫硫工藝中,預(yù)加氫反應(yīng)采用常規(guī)設(shè)備及工藝,本發(fā)明對焦化粗苯加氫脫硫工藝的改進,更多的體現(xiàn)在主加氫反應(yīng)的設(shè)計。
本發(fā)明的目的之一就在于,提供一種3種不同介孔分子篩的復(fù)合以表現(xiàn)出協(xié)同效應(yīng)和特殊催化性能,所述協(xié)同效應(yīng)表現(xiàn)在脫硫精制方面,而特殊的催化性能則是表現(xiàn)在對催化劑的使用壽命及催化活性的提高上。
在催化劑領(lǐng)域,根據(jù)國際純粹與應(yīng)用化學(xué)協(xié)會(IUPAC)的定義,孔徑小于2nm的稱為微孔;孔徑大于50nm的稱為大孔;孔徑在2到50nm之間的稱為介孔(或稱中孔)。介孔材料是一種孔徑介于微孔與大孔之間的具有巨大比表面積和三維孔道結(jié)構(gòu)的新型材料,它具有其它多孔材料所不具有的優(yōu)異特性:具有高度有序的孔道結(jié)構(gòu);孔徑單一分布,且孔徑尺寸可在較寬范圍變化;介孔形狀多樣,孔壁組成和性質(zhì)可調(diào)控;通過優(yōu)化合成條件可以得到高熱穩(wěn)定性和水熱穩(wěn)定性。
但在目前的應(yīng)用中,所述介孔材料在用于催化領(lǐng)域時,都是單獨使用,比如MCM系列,如MCM-22、MCM-36、MCM-41、MCM-48、MCM-49、MCM56,比如MSU系列,如MSU-1、MSU-2、MSU-4、MSU-X、MSU-G、MSU-S、MSU-J等,以及SBA系列,如SBA-1、SBA-2、SBA-3、SBA-6、SBA-7、SBA-8、SBA-11、SBA-15、SBA-16等,以及其他的介孔系列等。
少數(shù)研究文獻研究了兩種載體的復(fù)合,比如Y/SBA-15、Y/SAPO-5等,多數(shù)是以介孔-微孔復(fù)合分子篩和微孔-微孔復(fù)合分子篩為主。采用3種不同介孔分子篩的復(fù)合以表現(xiàn)出協(xié)同效應(yīng)和特殊催化性能的研究,目前尚未見報導(dǎo)。
本發(fā)明的催化劑載體是MSU-G、SBA-15和HMS的復(fù)合物或混合物。所述復(fù)合物或混合物中,MSU-G、SBA-15和HMS的重量比為1:(0.8-1.2):(0.4-0.7),優(yōu)選為1:(1-1.15):(0.5-0.7)。
本發(fā)明采用的MSU-G、SBA-15和HMS介孔分子篩均是催化領(lǐng)域已有的分子篩,其已經(jīng)在催化領(lǐng)域獲得廣泛研究和應(yīng)用。
MSU-G是一種具有泡囊結(jié)構(gòu)狀粒子形態(tài)和層狀骨架結(jié)構(gòu)的介孔分子篩,其具有高度的骨架交聯(lián)和相對較厚的骨架壁而具有超強的熱穩(wěn)定性和水熱穩(wěn)定性,其骨架孔與垂直于層和平行于層的孔相互交聯(lián),擴散路程因其囊泡殼厚而很短。MSU-G分子篩的囊泡狀粒子形態(tài)方便試劑進入層狀骨架的催化中心,其催化活性很高。
SBA-15屬于介孔分子篩的一種,具有二維六方通孔結(jié)構(gòu),具有P3mm空間群。在XRD衍射圖譜中,主峰在約1°附近,為(10)晶面峰。次強峰依次為(11)峰以及(20)峰。其他峰較弱,不易觀察到。此外,SBA-15骨架上的二氧化硅一般為無定形態(tài),在廣角XRD衍射中觀察不到明顯衍射峰。SBA-15具有較大的孔徑(最大可達30nm),較厚的孔壁(壁厚可達6.4nm),因而具有較好的水熱穩(wěn)定性。
六方介孔硅HMS具有長程有序而短程相對無序的六方介孔孔道,其孔壁比HCM41S型介孔材料更厚,因而水熱穩(wěn)定性更好,同時短程相對無序的組織結(jié)構(gòu)及孔徑調(diào)變范圍更大,使HMS材料具有更高的分子傳輸效率和吸附性能,適宜于作為大分子催化反應(yīng)的活性中心。
本發(fā)明從各個介孔材料中,進行復(fù)合配對,經(jīng)過廣泛的篩選,篩選出MSU-G、SBA-15和HMS的復(fù)合或混合。發(fā)明人發(fā)現(xiàn),在眾多的復(fù)合物/混合物中,只有MSU-G、SBA-15和HMS三者的復(fù)合或混合,才能實現(xiàn)加氫精制效果的協(xié)同提升,并能夠使得催化活性長期不降低,使用壽命能夠大大增加。換言之,只有本發(fā)明的MSU-G、SBA-15和HMS三者的特定復(fù)合或混合,才同時解決了協(xié)同和使用壽命兩個技術(shù)問題。其他配合,要么不具備協(xié)同作用,要么使用壽命較短。
所述復(fù)合物,可以采用MSU-G、SBA-15和HMS三者的簡單混合,也可以采用兩兩復(fù)合后的混合,比如MSU-G/SBA-15復(fù)合物、MSU-G/HMS和SBA-15/HMS復(fù)合物的混合。所述復(fù)合可以采用已知的靜電匹配法、離子交換法、兩步晶化法等進行制備。這些介孔分子篩和其復(fù)合物的制備方法是催化劑領(lǐng)域的已知方法,本發(fā)明不再就其進行贅述。
本發(fā)明中,特別限定活性組分為氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的混合比例,發(fā)明人發(fā)現(xiàn),不同的混合比例達到的效果完全不同。發(fā)明人發(fā)現(xiàn),氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的混合比例(摩爾比)為1:(0.4-0.6):(0.28-0.45):(0.8-1.2),只有控制氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的摩爾比在該范圍內(nèi),才能夠?qū)崿F(xiàn)焦化粗苯中含硫量控制在0.1ppm以下。也就是說,本發(fā)明的四種活性組分只有在摩爾比為1:(0.4-0.6):(0.28-0.45):(0.8-1.2)時,才具備協(xié)同效應(yīng)。除開該摩爾比范圍之外,或者省略或者替換任意一種組分,都不能實現(xiàn)協(xié)同效應(yīng)。
優(yōu)選的,氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的摩爾比為1:(0.45-0.5):(0.35-0.45):(0.8-1.0),進一步優(yōu)選為1:(0.45-0.48):(0.4-0.45):(0.9-1.0),最優(yōu)選1:0.48:0.42:0.95。
所述活性組分的總含量為載體重量的1%-15%,優(yōu)選3-12%,進一步優(yōu)選5-10%。例如,所述含量可以為2%、2.5%、3%、3.5%、4%、4.5%、5%、5.5%、6%、6.5%、7%、7.5%、8%、8.5%、9%、9.5%、10%、10.5%、11%、11.5%、12%、12.5%、13%、13.5%、14%、14.5%等。
本發(fā)明的目的之一還在于提供所述催化劑的助催化劑。本發(fā)明所述的催化劑還含有催化助劑,所述催化助劑為TiO2、CeO2、V2O5和NbOPO4(磷酸鈮)的混合物。
盡管在加氫精制特別是加氫脫硫領(lǐng)域,已經(jīng)有成熟的催化助劑,比如P、F和B等,其用于調(diào)節(jié)載體的性質(zhì),減弱金屬與載體間強的相互作用,改善催化劑的表面結(jié)構(gòu),提高金屬的可還原性,促使活性組分還原為低價態(tài),以提高催化劑的催化性能。但上述P、F和B催化助劑在應(yīng)用與本發(fā)明的載體與活性組分時,針對高硫組分,其促進催化脫硫/精制的作用了了。
本發(fā)明經(jīng)過在眾多常用助催化劑組分,以及部分活性組分中進行遴選、復(fù)配等,最終發(fā)現(xiàn)采用TiO2、CeO2、V2O5和NbOPO4(磷酸鈮)的混合物對本發(fā)明的催化劑促進作用明顯,能顯著提高其水熱穩(wěn)定性,并提高其防結(jié)焦失活能力,從而提高其使用壽命。
所述TiO2、CeO2、V2O5和NbOPO4之間沒有固定的比例,也就是說,TiO2、CeO2、V2O5和NbOPO4每一種各自的含量達到有效量即可。優(yōu)選的,本發(fā)明采用的TiO2、CeO2、V2O5和NbOPO4各自的含量均為(分別為)載體質(zhì)量的1-7%,優(yōu)選2-4%。
盡管本發(fā)明所述的催化助劑之間沒有特定的比例要求,但每一種助劑必須能夠達到有效量的要求,即能夠起到催化助劑作用的含量,例如載體質(zhì)量的1-7%。本發(fā)明在遴選過程中發(fā)現(xiàn),省略或者替換所述助劑中的一種或幾種,均達不到本發(fā)明的技術(shù)效果(提高水熱穩(wěn)定性,減少結(jié)焦提高使用壽命),也就是說,本發(fā)明的催化助劑之間存在特定的配合關(guān)系。
事實上,本發(fā)明曾經(jīng)嘗試將催化助劑中的磷酸鈮NbOPO4替換為五氧化二妮Nb2O5,發(fā)現(xiàn)盡管助劑中也引入了Nb,但其技術(shù)效果明顯低于磷酸鈮NbOPO4,其不僅水熱穩(wěn)定性稍差,其催化劑床層結(jié)焦相對快速,從而導(dǎo)致催化劑孔道堵塞,催化劑床層壓降上升相對較快。本發(fā)明也曾嘗試引入其他磷酸鹽,但這種嘗試盡管引入了磷酸根離子,但同樣存在水熱穩(wěn)定性相對稍差,其催化劑床層結(jié)焦相對快速,從而導(dǎo)致催化劑孔道堵塞,催化劑床層壓降上升相對較快。
盡管本發(fā)明引入催化助劑有如此之多的優(yōu)勢,但本發(fā)明必須說明的是,引入催化助劑僅僅是優(yōu)選方案之一,即使不引入該催化助劑,也不影響本發(fā)明主要發(fā)明目的的實施。不引入本發(fā)明的催化助劑特別是磷酸鈮,其相較于引入催化助劑的方案,其缺陷僅僅是相對的。即該缺陷是相對于引入催化助劑之后的缺陷,其相對于本發(fā)明之外的其他現(xiàn)有技術(shù),本發(fā)明所提及的所有優(yōu)勢或者新特性仍然存在。該催化助劑不是解決本發(fā)明主要技術(shù)問題所不可或缺的技術(shù)手段,其只是對本發(fā)明技術(shù)方案的進一步優(yōu)化,解決新的技術(shù)問題。
所述催化劑的制備方法可以采取常規(guī)的浸漬法以及其他替代方法,本領(lǐng)域技術(shù)人員可以根據(jù)其掌握的現(xiàn)有技術(shù)自由選擇,本發(fā)明不再贅述。
優(yōu)選的,所述固定床反應(yīng)器的反應(yīng)條件為:反應(yīng)溫度為340-360℃,氫氣壓力3.2-3.4MPa,氫油體積比600-800,體積空速1.5-1.8h-1。
優(yōu)選的,所述固定床反應(yīng)器包括1-5個催化劑床層,進一步優(yōu)選2-3個催化劑床層。
本發(fā)明的焦化粗苯加氫脫硫工藝通過選取特定的催化劑,所述催化劑通過選取特定比例的MSU-G、SBA-15和HMS復(fù)合物/混合物作為載體,以及選取特定比例的氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC作為活性成分,所述的催化劑還含有催化助劑,所述催化助劑為TiO2、CeO2、V2O5和NbOPO4的混合物,使得該催化劑產(chǎn)生協(xié)同效應(yīng),對焦化粗苯的加氫脫硫能控制在總硫含量低于0.1ppm。
具體實施方式
本發(fā)明通過下述實施例對本發(fā)明的加氫脫硫工藝進行說明。
實施例1
通過浸漬法制備得到催化劑,載體為MSU-G、SBA-15和HMS的混合物,混合比例是1:1.1:0.5。所述活性組分氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的總含量為載體質(zhì)量的10%,其摩爾比為1:0.4:0.3:0.8。
將所述催化劑裝填入固定床反應(yīng)器,所述反應(yīng)器的反應(yīng)管由內(nèi)徑50mm的不銹鋼制成,催化劑床層溫度用UGU808型溫控表測量,原材料輕質(zhì)油由北京衛(wèi)星制造廠制造的雙柱塞微量泵連續(xù)輸送,氫氣由高壓氣瓶供給并用北京七星華創(chuàng)D07-11A/ZM氣體質(zhì)量流量計控制流速,催化劑裝填量為2kg。
焦化粗苯與氫氣混合物從塔頂進入預(yù)反應(yīng)器,預(yù)反應(yīng)器中裝填有NiMo催化劑,其反應(yīng)溫度為230℃,加氫壓力為3.5MPa,其產(chǎn)物隨后進入所述固定床反應(yīng)器??刂浦鞣磻?yīng)條件為:反應(yīng)溫度為340℃,氫氣壓力3.4MPa,氫油體積比650,體積空速1.5h-1。得到的產(chǎn)物隨后進入萃取蒸餾單元,萃取溶劑采用環(huán)丁砜,萃取溫度控制在100℃,萃取壓力控制在200kPa。
測試最終的產(chǎn)品,其總硫含量降低到0.06ppm。
實施例2
通過浸漬法制備得到催化劑,載體為MSU-G/SBA-15復(fù)合物、MSU-G/HMS和SBA-15/HMS復(fù)合物的混合,其中MSU-G、SBA-15和HMS的比例與實施例1相同。所述活性組分氮化二鉬MO2N、氮化鎢W2N、碳化鉬Mo2C和碳化鎢WC的總含量為載體質(zhì)量的10%,其摩爾比為1:0.6:0.45):1.2。
其余條件與實施例1相同。
測試最終的產(chǎn)品,其總硫含量降低到0.03ppm。
對比例1
將實施例1的載體替換為MSU-G,其余條件不變。
測試最終的產(chǎn)品,其總硫含量為18ppm。
對比例2
將實施例1的載體替換為SBA-15,其余條件不變。
測試最終的產(chǎn)品,其總硫含量為16ppm。
對比例3
將實施例1的載體替換為HMS,其余條件不變。
測試最終的產(chǎn)品,其總硫含量為18ppm。
對比例4
將實施例1中的載體替換為MSU-G/SBA-15復(fù)合物,其余條件不變。
測試最終的產(chǎn)品,其總硫含量為11ppm。
對比例5
將實施例1中的載體替換為SBA-15/HMS復(fù)合物,其余條件不變。
測試最終的產(chǎn)品,其總硫含量為21ppm。
對比例6
將實施例1中的載體替換為MSU-G/HMS復(fù)合物,其余條件不變。
測試最終的產(chǎn)品,其總硫含量為18ppm。
實施例1與對比例1-6表明,本發(fā)明采用特定比例的MSU-G、SBA-15和HMS復(fù)合物/混合物作為載體,當替換為單一載體或兩兩復(fù)合載體時,均達不到本發(fā)明的技術(shù)效果,因此本發(fā)明的特定比例的MSU-G、SBA-15和HMS復(fù)合物/混合物作為載體與催化劑其他組分之間具備協(xié)同效應(yīng),所述加氫脫硫工藝產(chǎn)生了預(yù)料不到的技術(shù)效果。
對比例7
省略實施例1中的MO2N,其余條件不變。
測試最終的產(chǎn)品,其總硫含量為14ppm。
對比例8
省略實施例1中的WC,其余條件不變。
測試最終的產(chǎn)品,其總硫含量為10ppm。
上述實施例及對比例7-8說明,本發(fā)明的加氫脫硫工藝的催化劑幾種活性組分之間存在特定的聯(lián)系,省略或替換其中一種或幾種,都不能達到本申請的特定效果,證明其產(chǎn)生了協(xié)同效應(yīng)。
實施例3
催化劑中含有催化助劑TiO2、CeO2、V2O5和NbOPO4,其含量分別為1%、1.5%、1%和3%,其余與實施例1相同。
測試最終的產(chǎn)品,其使用3個月后,催化劑床層壓降無任何變化,相較于同樣使用時間實施例1的催化劑床層壓降減少19%。
對比例9
相較于實施例3,將其中的NbOPO4省略,其余條件相同。
測試最終的產(chǎn)品,其使用3個月后,催化劑床層壓降升高,相較于同樣使用時間實施例1的催化劑床層壓降只減少3.7%。
對比例10
相較于實施例3,將其中的CeO2省略,其余條件相同。
測試最終的產(chǎn)品,其使用3個月后,催化劑床層壓降升高,相較于同樣使用時間實施例1的催化劑床層壓降只減少4.5%。
實施例3與對比例9-10表明,本發(fā)明的催化助劑之間存在協(xié)同關(guān)系,當省略或替換其中一個或幾個組分時,都不能達到本發(fā)明加入催化助劑時的減少結(jié)焦從而阻止催化劑床層壓降升高的技術(shù)效果。即,其驗證了本發(fā)明的催化助劑能夠提高所述催化劑的使用壽命,而其他催化助劑效果不如該特定催化助劑。
申請人聲明,本發(fā)明通過上述實施例來說明本發(fā)明的工藝,但本發(fā)明并不局限于上述工藝,即不意味著本發(fā)明必須依賴上述詳細催化劑才能實施。所屬技術(shù)領(lǐng)域的技術(shù)人員應(yīng)該明了,對本發(fā)明的任何改進,對本發(fā)明產(chǎn)品各原料的等效替換及輔助成分的添加、具體方式的選擇等,均落在本發(fā)明的保護范圍和公開范圍之內(nèi)。