本發(fā)明涉及生物技術領域,特別是水解酶CwlC在芽胞桿菌母細胞裂解中的應用。
背景技術:
芽胞桿菌(Bacillus spp.)是一種產芽胞革蘭氏陽性菌,當受到外部環(huán)境的脅迫時會在母細胞中產生休眠的芽胞。在芽胞期晚期,母細胞自溶并伴隨著成熟芽胞的釋放是細菌細胞程序性死亡的標志(programmed cell death,簡稱PCD)(Lewis K.2000.Programmed death in bacteria.Microbiol Mol Biol Rev64:503–514.)。因此,理解母細胞中信號轉導通路控制的PCD是十分重要的,而細胞壁水解酶在這過程中起著關鍵的作用(Lewis K.2000.Programmed death in bacteria.Microbiol Mol Biol Rev64:503–514.)。細菌肽聚糖水解酶包括一個大的和高度多樣化的酶族群,它們可剪切高分子肽聚糖或可溶性片段的化學鍵(Shockman GD,Daneo-Moore L,Kariyama R,Massidda O.1996.Bacterial walls,peptidoglycan hydrolases,autolysins and autolysis.Microb Drug Resist2:95–98.)。因此,參與母細胞裂解的水解酶研究為細菌程序性死亡的探究提供了分子基礎。
枯草芽胞桿菌(Bacillus subtilis,簡稱B.subtilis)具有研究母細胞裂解行之有效的模式系統(tǒng),先前研究表明,在枯草芽胞桿菌中已經有10種以上的肽聚糖水解酶被發(fā)現(xiàn)(Foster SJ.1992.Analysis of the autolysins of Bacillus subtilis 168during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis.J Bacteriol174:464–470.;Foster SJ.1994.The role and regulation of cell wall structural dynamics during differentiation of endospore-forming bacteria.J Appl Bacteriol76:25S–39S.;Nugroho FA,Yamamoto H,Kobayashi Y,Sekiguchi J.1999.Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.;Vollmer W,Joris B,Charlier P,Foster S.2008.Bacterial peptidoglycan(murein)hydrolases.FEMS Microbiol Rev32:259–286.)。這些肽聚糖水解酶主要參與細胞壁的翻轉(Mauck J,Chan L,Glaser L.1970.Turnover of the cell wall of gram-positive bacteria.The J Biol Chem246:1820–1827.)和能源匱乏時的細胞裂解(Brown WC,Fraser DK,Young FE.1970.Problems in purification of a Bacilllus subtilis autolytic enzyme caused by association with teichoic acid.Biochim Biophys Acta 198:308–315.,Fan DP,Bechman MM.1972.New centrifugation technique for isolating enzymes from large cell structures:Isolation and characterization of two Bacillus subtilis autolysins.J Bacteriol109:1258–1268.)。目前,大多數(shù)已鑒定的水解酶是MurNAc-LAAs(Foster SJ.1992.Analysis of the autolysins of Bacillus subtilis 168during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis.J Bacteriol174:464–470.,Nugroho FA,Yamamoto H,Kobayashi Y,Sekiguchi J.1999.Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.,Herbold DR,Glaser L.1975.Bacillus subtilisN-acetylmuramic acid L-alanine amidase.The J Biol Chem250:1676–1682.;Kuroda A,Asami Y,Sekiguchi J.1993.Molecular cloning of a sporulation specific cell wall hydrolase gene of Bacillus subtilis.J Bacteriol175:6260–6268.;Kuroda A,Sekiguchi J.1990.Cloning,sequencing and genetic mapping of a Bacillus subtilis cell wall hydrolase gene.J Gen Microbiol136:2209–2216.),它可以水解位于N-乙酰胞壁酸和L-丙氨酸之間的酰胺鍵,從而將糖鏈和肽鏈分開(Vollmer W,Joris B,Charlier P,Foster S.2008.Bacterial peptidoglycan(murein)hydrolases.FEMS Microbiol Rev32:259–286.)。具有90kDa的內-β-N-乙酰葡糖胺糖苷酶能水解位于N-乙酰-β-D-葡糖胺殘基和相鄰的單糖之間的糖苷鍵,這些糖苷鍵可來自不同寡聚糖中,包括N-多糖,肽聚糖,和幾丁質(Karamanos Y.1997.Endo-N-acetyl-beta-D-glucosaminidases and their potential substrates:structure/function relationships.Res Microbiol 148:661–671.)。主要的細胞壁水解酶是CwlB(也稱為LytC),CwlC,和CwlH。CwlB是在對數(shù)生長末期產生的營養(yǎng)期主要水解酶,它也出現(xiàn)在芽胞期(Foster SJ.1992.Analysis of the autolysins of Bacillus subtilis 168during vegetative growth and differentiation by using renaturing polyacrylamide gel electrophoresis.J Bacteriol174:464–470.,Herbold DR,Glaser L.1975.Bacillus subtilisN-acetylmuramic acid L-alanine amidase.The J Biol Chem250:1676–1682.)。由σk控制的CwlC(Kuroda A,Asami Y,Sekiguchi J.1993.Molecular cloning of a sporulation specific cell wall hydrolase gene of Bacillus subtilis.J Bacteriol175:6260–6268.)和CwlH(Nugroho FA,Yamamoto H,Kobayashi Y,Sekiguchi J.1999.Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.)是芽胞期特有的水解酶。在cwlB,cwlC和cwlH三個基因中,兩兩基因缺失使細胞不能正常裂解,三個基因同時缺失會阻斷母細胞的裂解,單個基因缺失并沒有影響母細胞裂解(Nugroho FA,Yamamoto H,Kobayashi Y,Sekiguchi J.1999.Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.,Smith TJ,Foster SJ.1995.Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168.J Bacteriol177:3855–3862.)。
廣義的蠟狀芽胞桿菌族由蠟樣芽胞桿菌(Bacillus cereus,簡稱B.cereus)、蘇云金芽胞桿菌(Bacillus thuringiensis,簡稱B.thuringiensis)、炭疽芽胞桿菌(Bacillus anthracis,簡稱B.anthracis),和其他4種芽胞桿菌組成。B.cereus是一種眾所周知的條件致病菌,尤其與食品加工和乳制品產業(yè)中的污染密切相關(Stenfors Arnesen LP,Fagerlund A,Granum PE.2008.From soli to gut:Bacillus cereus and its food poisoning toxins.FEMS Microbiol Rev32:579–606.)??尚纬筛叨玖ρ堪腂.anthracis是一種急性致命的炭疽病病原,因此,可用于生物武器(Helgason E,Okstad OA,Caugant DA,Johansen HA,Fouet A,Mock M,Hegna I,Kolsto AB.2000.Bacillus anthracis,Bacillus cereus,and Bacillus thuringiensis–one species on the basis of genetic evidence.Appl Environ Microbiol66:2627–2630.,Vilas-Boas GT,Peruca APS,Arantes OMN.2007.Biology and taxonomy of Bacillus cereus,Bacillus anthracis,and Bacillus thuringiensis.Can J Microbiol53:673–687.)。
和B.subtilis相比,我們對B.cereus中的水解酶知之甚少。目前,B.cereus中已知的水解酶包括sleB編碼的芽胞萌發(fā)期皮質溶解酶SCLE(germination-specific spore cortex-lytic enzyme,一種MurNAc-LAA)(Moriyama R,Kudoh S,Miyata S,Nonobe S,Hattori A,Makino S.1996.A germination-specific spore cortex-lytic enzyme from Bacillus cereus spores:cloning and sequencing of the gene and molecular characterization of the enzyme.J Bacteriol178:5330–5332.),和sleL編碼的裂解芽胞皮質片段的溶解酶CFLE(spore-lytic cortical-fragment-lytic enzyme,一種N-乙酰葡糖胺糖苷酶)(Chen YH,Fukuoka S,Makino S.2000.A novel spore peptidoglycan hydrolase of Bacillus cereus:biochemical characterization and nucleotide sequence of the corresponding gene,sleL.J Bacteriol182:1499–1506.),和由entFM編碼的細胞壁肽酶CwpFM(the potential cell wall peptidase)(Tran S-L,Guillemet E,Gohar M,Lereclus D,Ramarao N.2010.CwpFM(EntFM)is a Bacillus cereuspotential cell wall peptidase implicated in adhesion,biofilm formation,and virulence.J Bacteriol192:2638–2642.)。SCLE偏向水解完整的芽胞肽聚糖,然而CFLE水解不完整的芽胞肽聚糖(Moriyama R,Kudoh S,Miyata S,Nonobe S,Hattori A,Makino S.1996.A germination-specific spore cortex-lytic enzyme from Bacillus cereus spores:cloning and sequencing of the gene and molecular characterization of the enzyme.J Bacteriol178:5330–5332.,Chen YH,Fukuoka S,Makino S.2000.A novel spore peptidoglycan hydrolase of Bacillus cereus:biochemical characterization and nucleotide sequence of the corresponding gene,sleL.J Bacteriol182:1499–1506.)。CwpFM具有多種功能,如涉及細菌的形狀、上皮細胞粘附、運動、生物膜形成、毒力和巨噬細胞空泡化(Tran S-L,Guillemet E,Gohar M,Lereclus D,Ramarao N.2010.CwpFM(EntFM)is a Bacillus cereuspotential cell wall peptidase implicated in adhesion,biofilm formation,and virulence.J Bacteriol192:2638–2642.)。然而,上述所有的酶都不參與B.cereus母細胞的裂解。另外,在炭疽芽胞桿菌中,噬菌體裂解酶和細菌中有關裂解酶的活性已被廣泛研究(Paskaleva EE,Mundra RV,Mehta KK,Pangule RC,Wu X,Glatfelter WS,Chen Z,Dordick JS,Kane RS.2015.Binding domains of Bacillus anthracis phage endolysins recognize cell culture age-related features on the bacterial surface.Biotechnol Prog31:1487–1493.,Watanabe T,Morimoto A,Shiomi T.1975.The fine structure and the protein composition ofλphage of Bacillus anthracis.Can J Microbiol21:1889–1892.,Loessner MJ.2005.Bacteriophage endolysins-current state of research and applications.Curr Opin Microbiol8:480–487.,F(xiàn)ischetti VA.2008.Bacteriophage lysins as effective antibacterials.Curr Opin Microbiol11:393–400.),并發(fā)現(xiàn)溶解酶PlyG和PlyPH可以非常有效的抵抗B.anthracis(Paskaleva EE,Mundra RV,Mehta KK,Pangule RC,Wu X,Glatfelter WS,Chen Z,Dordick JS,Kane RS.2015.Binding domains of Bacillus anthracis phage endolysins recognize cell culture age-related features on the bacterial surface.Biotechnol Prog31:1487–1493.,Watanabe T,Morimoto A,Shiomi T.1975.The fine structure and the protein composition ofλphage of Bacillus anthracis.Can J Microbiol21:1889–1892.,F(xiàn)ischetti VA.2005.Bacteriophage lytic enzymes:novel anti-infectives.Trends Microbiol13:491–496.)。
B.thuringiensis是目前世界上應用最廣泛的生物殺蟲劑(Sanahuja G,Banakar R,Twyman RM,Capell T,Christou P.2011.Bacillus thuringiensis:a century of research,development and commercial applications.Plant Biotechnol J9:283–300.),B.thuringiensis區(qū)別于B.anthracis和B.cereus的主要特征即是在芽胞期會產生1個或多個具有廣泛殺蟲活性的伴胞晶體(Vilas-Boas GT,Peruca APS,Arantes OMN.2007.Biology and taxonomy of Bacillus cereus,Bacillus anthracis,and Bacillus thuringiensis.Can J Microbiol53:673–687.)。然而,當釋放的晶體在田間應用過程中受到田間紫外的照射會發(fā)生失活(Myasnik M,Manasherob R,Ben-Dov E,Zaritsky A,Margalith Y,Barak Z.2001.Comparative sensitivity to VU-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp.Curr Microbiol43:140–143.)。避免晶體蛋白失活的其中一種方法是敲除σk基因,從而將晶體蛋白包括在母細胞中來增加它殺蟲活性的持效性(Sanchis V,Gohar M,Chaufaux J,Arantes O,Meier A,Agaisse H,Cayley J,Lereclus D.1999.Development,and field performance of a broad-spectrum nonviable asporogenic recombinant strain of Bacillus thuringiensis with greater potency and UV resistance.Appl Environ Microbiol65:4032–4039.);另一種方法是構建細胞壁水解酶基因缺失的工程菌。先前有研究鑒定了參與母細胞裂解的水解酶B.thuringiensis CwlB,并對其生化特性進行研究(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.)。NCBI blast結果顯示,B.thuringiensis CwlB與B.subtilis中的水解酶氨基酸相似性很低。CwlB是B.cereus族中首次發(fā)現(xiàn)的參與母細胞裂解的水解酶(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.)。然而,B.cereus族中參與母細胞裂解的關鍵水解酶仍未知。
技術實現(xiàn)要素:
本發(fā)明驗證了一個新的芽胞期特有的cwlC基因,它編碼一個27.1kDa大小蛋白CwlC(MurNAc-LAA),CwlC是參與母細胞裂解的關鍵水解酶。另外,通過激光共聚焦顯微鏡(confocal laser scanning microscopy,簡稱CLSM)觀察到CwlC-GFP融合蛋白定位在細胞壁上。另外,CwlC可水解有活性的B.thuringiensis和B.cereus細胞的細胞壁。因此,本研究發(fā)現(xiàn)為細胞程序性死亡的研究和B.thuringiensis工程菌的構建提供了良好的分子基礎。我們的研究結果也發(fā)掘了一種新的有效的生物酶,它將有助于病原菌B.cereus感染治療的發(fā)展。
水解酶CwlC在芽胞桿菌母細胞裂解中的應用。
所述應用為使芽胞桿菌菌株中缺失cwlC基因。
所述的應用,為使用CwlC蛋白水解芽胞桿菌活細胞的細胞壁。
所述芽胞桿菌為蘇云金芽胞桿菌(B.thuringiensis)或蠟樣芽胞桿菌(Bacillus cereus)。
所述水解酶CwlC的氨基酸序列如SEQ ID NO:2所示。
所述水解酶CwlC的基因序列如SEQ ID NO:1所示。
所述的應用構建得到的缺失cwlC基因的芽胞桿菌突變株。
所述芽胞桿菌為蘇云金芽胞桿菌(B.thuringiensis),所述cwlC基因的序列如SEQ ID NO:1所示或與SEQ ID NO:1同源性在95%以上的同源基因。
所述的突變株,命名為HD(ΔcwlC),其原始菌株為B.thuringiensis HD73。
本發(fā)明鑒定了一個新的基因cwlC,基因序列如SEQ ID NO:1所示;它編碼一種MurNAc-LAA蛋白,氨基酸序列如SEQ ID NO:2所示;并且發(fā)現(xiàn)在芽胞期(T8時期后)cwlC受σK的控制和GerE的正調控。表型觀察結果表明CwlC對B.thuringiensis母細胞裂解起著關鍵性的作用。另外,本研究確定了CwlC蛋白的生化特性,發(fā)現(xiàn)CwlC定位在細胞壁表面。最后,本發(fā)明發(fā)現(xiàn)CwlC對B.thuringiensis和B.cereus活細胞細胞壁也有明顯的水解活性。
已鑒定的B.subtilis中主要的三個細胞壁水解酶包括CwlB(Herbold DR,Glaser L.1975.Bacillus subtilisN-acetylmuramic acid L-alanine amidase.The J Biol Chem250:1676–1682.),CwlC(Kuroda A,Asami Y,Sekiguchi J.1993.Molecular cloning of a sporulation specific cell wall hydrolase gene of Bacillus subtilis.J Bacteriol175:6260–6268.),和CwlH(Nugroho FA,Yamamoto H,Kobayashi Y,Sekiguchi J.1999.Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.),他們均為MurNAc-LAAs。B.thuringiensis CwlB也是一種MurNAc-LAA(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.)。這些蛋白都包含一個MurNAc-LAA家族結構域(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.)。本研究發(fā)現(xiàn)一種潛在的新的B.thuringiensis自溶酶CwlC,預測它含有N-末端MurNAc-LAA家族結構域和一個C-末端肽聚糖結合結構域(圖1中B),NCBI BlastP結果顯示它與B.thuringiensis CwlB蛋白的相似性僅為20%。在B.subtilis中,已發(fā)現(xiàn)的自溶酶基因單獨缺失并不能影響母細胞的裂解(Nugroho FA,Yamamoto H,Kobayashi Y,Sekiguchi J.1999.Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.,Smith TJ,Foster SJ.1995.Characterization of the involvement of two compensatory autolysins in mother cell lysis during sporulation of Bacillus subtilis 168.J Bacteriol177:3855–3862.);而在B.thuringiensis中,cwlB基因缺失可明顯延緩母細胞的裂解(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.),并且本發(fā)明發(fā)現(xiàn)的cwlC基因缺失可完全阻斷母細胞的裂解(圖3)。這些數(shù)據(jù)表明芽胞桿菌母細胞的裂解機制并不保守;因此,推測芽胞桿菌母細胞的裂解存在復雜的調控網絡。CwlC是首次在B.thuringiensis中發(fā)現(xiàn)的參與母細胞裂解的關鍵水解酶?;诖税l(fā)現(xiàn),可構建耐紫外線照射的B.thuringiensis工程菌(Manasherob R,Ben-Dov E,Xiaoqiang W,Boussiba S,Zaritsky A.2002.Protection from UV-B damage of mosquito larvicidal toxins from Bacillus thuringiensis subsp.israelensis expressed in Anabaena PCC 7120.Curr Microbiol45:217–220.,Myasnik M,Manasherob R,Ben-Dov E,Zaritsky A,Margalith Y,Barak Z.2001.Comparative sensitivity to UV-B radiation of two Bacillus thuringiensis subspecies and other Bacillus sp.Curr Microbiol43:140–143.,Sanchis V,Gohar M,Chaufaux J,Arantes O,Meier A,Agaisse H,Cayley J,Lereclus D.1999.Development and field performance of a broad-spectrum nonviable asporogenic recombinant strain of Bacillus thuringiensis with greater potency and UV resistance.Appl Environ Microbiol65:4032–4039.)應用在農業(yè)生產中。
NCBI blastP結果顯示,與CwlC蛋白相似性在90%以上的蛋白多達100多種,他們廣泛地分布在B.thuringiensis、B.cereus及其它蠟樣芽胞桿菌族菌株中,但并沒有出現(xiàn)在B.anthracis或B.pseudomycoides菌株中(圖8)。該結果表明CwlC蛋白可能參與多種蠟樣芽胞桿菌族菌株細胞壁的水解。眾所周知,許多蠟狀芽胞桿菌菌株是可引起感染和醫(yī)療、食品加工中污染的致病性細菌(Stenfors Arnesen LP,Fagerlund A,Granum PE.2008.From soli to gut:Bacillus cereus and its food poisoning toxins.FEMS Microbiol Rev32:579–606.,Vilas-Boas GT,Peruca APS,Arantes OMN.2007.Biology and taxonomy of Bacillus cereus,Bacillus anthracis,and Bacillus thuringiensis.Can J Microbiol53:673–687.)。本研究表明CwlC能水解有活性的蠟樣芽胞桿菌細胞壁。這些發(fā)現(xiàn)可能提供一個新的替代抗生素治療由蠟樣芽胞桿菌族病原菌引起感染的策略(Fischetti VA.2005.Bacteriophage lytic enzymes:novel anti-infectives.Trends Microbiol13:491–496.,Tenover FC.2006.Mechanisms of antimicrobial resistance in bacteria.Am J Med119:S3–S10;discussion S62–S70.,F(xiàn)ischetti VA.2008.Bacteriophage lysins as effective antibacterials.Curr Opin Microbiol11:393–400.)。此外,CwlC可以發(fā)展成為一種在食品、生物技術和醫(yī)學領域應用的工具酶(Loessner MJ.2005.Bacteriophage endolysins--current state of research and applications.Curr Opin Microbiol8:480–487.)。
關于由細胞壁水解酶引起母細胞裂解的生物學意義,一個簡單例子如PCD在各種發(fā)育過程中通過消除不必要的和有缺陷的細胞,如芽胞期母細胞裂解,粘細菌的子實體形成時營養(yǎng)細胞的裂解,和鏈球菌經自溶作用釋放DNA而進行轉化,起著重要的作用(Lewis K.2000.Programmed death in bacteria.Microbiol Mol Biol Rev64:503–514.)。在B.subtilis芽胞期,母細胞裂解先于芽胞的釋放。母細胞自溶是消除干擾萌發(fā)芽胞的生長障礙,并且母細胞釋放的營養(yǎng)給親緣細胞可能會提供給他們芽胞形成中需要的能量(Lewis K.2000.Programmed death in bacteria.Microbiol Mol Biol Rev64:503–514.)。事實上,不像體內的浮游細胞,大多數(shù)細菌都生活在復雜的生物膜中,他們是以細胞群體狀態(tài)生活(Costerton JM,Stewart PS,Greenberg EP.1999.Bacterial biofilms:a common cause of persistent infections.Science 284:1318–1322.)。在PCD過程中,細胞裂解釋放到胞外的DNA和蛋白質這可能成為生物膜基質的一部分(Thomas VC,Sadykov MR,Chaudhari SS,Jones J,Endres JL,Widhelm TJ,Ahn JS,Jawa RS,Zimmerman MC,Bayles KW.2014.A central role for carbon-overflow pathways in the modulation of bacterial cell death.PLoS Pathog10:e1004205.)。從這一角度分析,PCD可能有助于多細胞群體的形成,以此來抵抗外界環(huán)境的壓力。Hosoya et al.[Hosoya S,Lu Z,Ozaki Y,Takeuchi M,Sato T.2007.Cytological analysis of the mother cell death process during sporulation in Bacillus subtilis.J Bacteriol189:2561–2565.]探究了細胞膜破裂和母細胞死亡細胞壁裂解之間的關系。通過細胞形態(tài)變化的觀察,他們發(fā)現(xiàn)在細胞裂解前細胞膜破裂。據(jù)此,本發(fā)明人推測cwlC突變體細胞有可能更快的進入PCD過程,盡管該突變體培養(yǎng)到第15天都沒發(fā)現(xiàn)其裂解跡象(圖3中B)。因此,接下來研究CwlC的轉錄調控和分泌,以及探索它與PCD之間的關系都將會很有意義。
附圖說明
圖1 B.thuringiensis HD73cwlC基因轉錄單元分析。
(A)B.thuringiensis HD73RS15870-RS15880基因在基因組位置中的圖譜。從基因組染色體上敲除的cwlC基因缺失區(qū)域被標示出來。曲線表示cwlC基因的啟動子。注釋有字母的虛線區(qū)域對應RT-PCR的擴增產物(見Fig.1C泳道)。實線表示各基因的ORFs。
(B)B.thuringiensis HD73CwlC和CwlB細胞壁水解酶的結構域組成?;疑虮硎炯毎诮Y合結構域。黑色框表示MurNAc-LAA結構域。
(C)RT-PCR分析B.thuringiensis HD73cwlC基因轉錄單元。不加cDNA模板的PCR擴增作為陰性對照。以基因組DNA為模板的PCR擴增作為陽性對照。字母指代RT-PCR擴增產物在基因組位點對應的位置,見Fig.1A??俁NA從SSM培養(yǎng)基T15時期提取。
圖2 cwlC啟動子在HD73,HD(ΔgerE),and HD(ΔsigK)菌株中的轉錄活性分析。
(A)B.thuringiensis HD73cwlC基因序列分析。1,474-bp的序列被注釋,省略部分用點表示。轉錄起始位點(+1),預測的-35和-10區(qū)域和GerE保守結合位點被注釋。RS15870和cwlC基因的起始密碼子和終止密碼子分別用單劃線和雙劃線表示。
(B)β-galactosidase活性測定實驗用來比較cwlC基因啟動子在不同菌株的轉錄活性,菌株均培養(yǎng)在SSM培養(yǎng)基30℃,220rpm條件中;Tn是T0后的n個小時。每個值表示三次獨立重復的平均值。誤差線表示標準偏差。
圖3光學顯微鏡觀察母細胞的裂解情況。
(A)光學顯微鏡觀察B.thuringiensis HD73野生株,突變體HD(ΔcwlC)菌株和恢復突變株HD(ΔcwlC::cwlC)在T0、T16和T24時期的細胞形態(tài),菌株均培養(yǎng)在SSM培養(yǎng)基30℃,220rpm條件中。標尺,10μm。
(B)光學顯微鏡觀察B.thuringiensis突變體HD(ΔcwlC)菌株在培養(yǎng)至3天,5天和7天時的細胞形態(tài),菌株均培養(yǎng)在SSM培養(yǎng)基30℃,220rpm條件中。標尺,10μm。
圖4 B.thuringiensis HD73野生株和突變體HD(ΔcwlC)菌株芽胞形成率和晶體產量的比較。
(A)cwlC基因缺失未影響芽胞形成率。誤差線表示標準偏差。
(B)cwlC基因缺失未影響晶體蛋白產量。誤差線表示標準偏差。
圖5 CwlC蛋白的生化特性分析
(A)E.coli表達的CwlC蛋白經鎳親和層析柱純化后的SDS-PAGE分析。M代表蛋白Marker。
(B)Western blot分析確定細胞壁的結合能力。
(C)純化的CwlC蛋白水解B.thuringiensis細胞壁。CwlC(37.5μg)蛋白和體外制備的B.thuringiensis細胞壁混合在5ml 0.05M TK buffer(pH 7.0)中,并溫育在37℃。隨后,在不同的時間間隔取500μl測量在OD540的混濁度(▲);不加CwlC蛋白的細胞壁單獨溫育在37℃用作陰性對照(■)。
圖6 CwlC蛋白的定位
(A)cwlC基因與gfp基因融合載體的構建示意圖。
(B)培養(yǎng)于SSM培養(yǎng)基中的HD(pHT-gfp-cwlC)菌株在T16和T20時期的CLSM觀察圖像。黃色、藍色和白色箭頭分別指示未裂解的細胞、已裂解的細胞和晶體細胞。GFP代表在細菌細胞中觀察到的綠色熒光蛋白信號;FM4-64表示FM4-64染液的紅色熒光信號;Overlay表示綠色熒光信號和紅色熒光信號的重疊;PC表示相差顯微圖像(明場)。標尺,15μm。
圖7 CwlC蛋白水解有活性的B.thuringiensis和B.cereus細胞的細胞壁。
(A)CwlC蛋白對有活性B.thuringiensis細胞的水解作用。B.thuringiensis細胞和CwlC蛋白(15μg)混合在0.2M PBS buffer中(pH 6.5)至OD600約為0.6,并溫育在37℃0,10,20,30,or 40min。隨后,在不同的時間間隔測量OD600值(▲);不加CwlC蛋白的B.thuringiensis細胞單獨溫育在37℃用作陰性對照(■)。
(B)CwlC蛋白對有活性B.cereus細胞的水解作用。B.cereus細胞和CwlC蛋白(15μg)混合在0.2M PBS buffer中(pH 6.5)至OD600約為0.6,并溫育在37℃0,10,20,30,或40min。隨后,在不同的時間間隔測量OD600值(▲);不加CwlC蛋白的B.cereus細胞單獨溫育在37℃用作陰性對照(■)。
圖8 CwlC在芽胞桿菌中的保守性分布,圖中為與CwlC相似性大于90%的蛋白。
具體實施方式
下面結合實施例對本發(fā)明做進一步的詳細說明。
材料和方法:
細菌菌株,質粒和培養(yǎng)條件:本研究用到的菌株和質粒均列在表1中。大腸桿菌(Escherichia coli,簡稱E.coli)TG1和BL21分別用作分子克隆和蛋白表達的宿主菌株,E.coli ET12567用于為質粒DNA去甲基化(Hoffmann F,Schmidt M,Rinas U.2000.Simple technique for simultaneous on-line estimation of biomass and acetate from base consumption and conductivity measurements in high-cell density cultures of Escherichia coli.Biotechnol Bioeng70:358–361.,Wang G,Zhang J,Song F,Wu J,Feng S,Huang D.2006.Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests.Appl Microbiol Biotechnol72:924–930.)。E.coli所有的菌株在37℃條件下Luria–Bertani(LB)培養(yǎng)基(1%tryptone,0.5%yeast extract,1%NaCl)中培養(yǎng),當實驗條件需要時,會加入終濃度為5μg/ml的氯霉素或終濃度為100μg/ml氨芐青霉素。B.thuringiensis HD73用作檢測啟動子的轉錄活性和基因克隆的受體菌(Du C,Nickerson KW.1996.Bacillus thuringiensis HD-73spores have surface-localized Cry1Ac toxin:physiological and pathogenic consequences.Appl Environ Microbiol62:3722–3726.,Liu G,Song L,Shu C,Wang P,Deng C,Peng Q,Lereclus D,Wang X,Huang D,Zhang J,Song F.2013.Complete genome sequence of Bacillus thuringiensis subsp.kurstaki strain HD73.Genome Announc1:e00080-13.)。B.thuringiensis HD73及其衍生菌株通常培養(yǎng)在30℃條件下LB培養(yǎng)基中,當需要時,加入終濃度為5μg/ml紅霉素或100μg/ml卡那霉素。Schaeffer’s sporulation medium(SSM;8g nutrient broth,0.12g MgSO4,1g KCl,0.5mM NaOH,1mM Ca(NO3)2,0.01μM MnCl2,1μM FeSO4per liter broth)用于芽胞形成實驗(Schaeffer P,Millet J,Aubert JP.1965.Catabolic repression of bacterial sporulation.Proc Natl Acad Sci U S A54:704–711.)。下述菌株和質粒可以對公眾發(fā)放。
表1.本研究應用到的菌株和質粒
[32]Wang G,Zhang J,Song F,Wu J,Feng S,Huang D.2006.Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests.Appl Microbiol Biotechnol72:924–930.Wang G,Zhang J,Song F,Wu J,Feng S,Huang D.2006.Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests.Appl Microbiol Biotechnol72:924–930.
[33]Du C,Nickerson KW.1996.Bacillus thuringiensis HD-73 spores have surface-localized Cry1Ac toxin:physiological and pathogenic consequences.Appl Environ Microbiol62:3722–3726.
[34]Liu G,Song L,Shu C,Wang P,Deng C,Peng Q,Lereclus D,Wang X,Huang D,Zhang J,Song F.2013.Complete genome sequence of Bacillus thuringiensis subsp.kurstaki strain HD73.Genome Announc1:e00080-13.
[39]Gennaro ML,Iordanescu S,Novick RP,Murray RW,Steck TR,Khan SA.1989.Functional organization of the plasmid pT181 replication origin.J Mol Biol205:355–362.
[41]Arantes O,Lereclus D.1991.Construction of cloning vectors for Bacillus thuringiensis.Gene 108:115–119.
[42]Agaisse H,Lereclus D.1994.Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis.Mol Microbiol13:97–107.
[43]Du L,Wei J,Han L,Chen Z,Zhang J,Song F,Huang D.2011.[Characterization of Bacillus thuringiensis sigK disruption mutant and its influence on activation of cry3A promoter].Wei Sheng Wu Xue Bao51:1177–1184.
[63]Thomas VC,Sadykov MR,Chaudhari SS,Jones J,Endres JL,Widhelm TJ,Ahn JS,Jawa RS,Zimmerman MC,Bayles KW.2014.A central role for carbon-overflow pathways in the modulation of bacterial cell death.PLoS Pathog10:e1004205.
DNA的操作:Taq DNA polymerase(BioMed,北京,中國)and PrimeSTAR HS DNA Polymerase(TaKaRa Biotechnology Corporation,北京,中國)用于PCR的擴增。AxyPrep PCR Cleanup Kit(Axygen Biotechnology Corporation,北京,中國)用于PCR擴增片段的純化。用于PCR模板的B.thuringiensis基因組DNA從煮沸10分鐘后的菌液上清中獲得。限制性內切酶和T4DNA ligase(TaKaRa Biotechnology Corporation,北京,中國)按照制造商說明書使用。寡聚核苷酸引物(見表2)在Sangon Biotech(北京,中國)合成。Axygen Plasmid Miniprep Kit(Axygen Biotechnology Corporation,北京,中國)用于提取E.coli中的質粒DNA。所有構建的質粒均在華大(BGI,北京,中國)測序驗證。熱擊法用于質粒轉化E.coli(Sambrook J,Fritsch EF,Maniatis T,Molecular cloning:a laboratory manual,1989,Cold Spring Harbor Laboratory Press:Cold Spring Harbor,NY.);電擊法用于質粒轉化B.thuringiensis(Lereclus D,Arantes O,Chaufaux J,Lecadet M.1989.Transformation and expression of a cloned delta-endotoxin gene in Bacillus thuringiensis.FEMS Microbiol Lett51:211–217.)。
表2.本研究用到的引物序列
總RNA的提取和反轉錄PCR(RT-PCR):生長在SSM培養(yǎng)基中T15(T15是對數(shù)生長末期[T0]后的第15個小時)時期的B.thuringiensis HD73菌用于總RNA的提取,RT-PCR按照文獻(Du L,Qiu L,Peng Q,Lereclus D,Zhang J,Song F,Huang D.2012.Identification of the promoter in the intergenic region between orf1and cry8Ea1controlled by sigma H factor.Appl Environ Microbiol78:4164–4168.)方法進行。用于RT-PCR分析的引物均列在見表2中。
轉錄起始位點的確定:cDNA 5’末端快速擴增PCR(5′-rapid amplification of cDNA ends,5’RACE)方法用于確定cwlC基因轉錄起始位點,實驗方法詳見生產商說明書(Clontech Laboratories,Inc.TaKaRa Biotechnology Corporation,Beijing,China)。5’RACE所用到的寡聚核苷酸引物見表2。
菌株構建:用同源重組的方法構建cwlC基因缺失突變株。具體方法如下:以B.thuringiensis HD73基因組DNA為模板和cwlC-a/cwlC-b為引物,通過PCR擴增出位于cwlC基因上游709bp大小的片段(cwlC片段A),該片段包括cwlC基因5’端27bp;以B.thuringiensis HD73基因組DNA為模板和cwlC-c/cwlC-d為引物,通過PCR擴增出位于cwlC基因下游548bp大小的片段(cwlC片段B),該片段包括cwlC基因3’端15bp。以pDG780質粒(Wang G,Zhang J,Song F,Wu J,Feng S,Huang D.2006.Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests.Appl Microbiol Biotechnol72:924–930.Wang G,Zhang J,Song F,Wu J,Feng S,Huang D.2006.Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests.Appl Microbiol Biotechnol72:924–930.)為模板和CKm-a/CKm-b為引物,通過PCR擴增出大小為1,473bp的卡那霉素抗性基因(Kan片段)。隨后,以cwlC-a/cwlC-d為引物,通過重疊PCR擴增將cwlC片段A,Kan片段和cwlC片段B三個DNA片段重疊成一個2,730bp大小的DNA片段。將上述擴增產生的DNA片段和pRN5101溫敏質粒(Gennaro ML,Iordanescu S,Novick RP,Murray RW,Steck TR,Khan SA.1989.Functional organization of the plasmid pT181replication origin.J Mol Biol205:355–362.)同時進行BamHI和SalI雙酶切,分別產生帶有粘性末端的DNA片段,這兩個DNA片段通過T4連接酶連接,獲得重組質粒pRN5101_cwlC。該重組質粒通過電擊轉化進B.thuringiensis HD73細胞中,在紅霉素和卡那霉素雙抗性板上進行轉化子的初步篩選,以pRN5101-r/pRN5101-f為引物進行轉化子的鑒定。通過同源重組的方法進行cwlC基因缺失突變體的篩選(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.),以cwlC-a和cwlC-d為引物進行鑒定,最終篩選獲得突變體菌株HD(ΔcwlC)。HD(ΔcwlC)菌株中cwlC基因開放閱讀框(open reading fradme,ORF)中10-240的密碼子處的DNA序列被1,473bp的含有卡那霉素抗性基因的DNA片段交換。
為構建HD(ΔcwlC)突變體的恢復株,以B.thuringiensis HD73基因組DNA為模板和HFcwlC-F/HFcwlC-R為引物,通過PCR擴增出包括cwlC啟動子和ORF在內的大小為1,423bp的DNA片段。將上述擴增產生的DNA片段和pHT315穿梭質粒(Arantes O,Lereclus D.1991.Construction of cloning vectors for Bacillus thuringiensis.Gene 108:115–119.)同時進行HindIII和SalI雙酶切,通過T4連接酶連接,獲得重組質粒pHTHFcwlC。該重組質粒通過電擊轉化進HD(ΔcwlC)突變體菌株中,在紅霉素和卡那霉素雙抗性板上進行轉化子的初步篩選,以HFcwlC-F/HFcwlC-R為引物進行轉化子的鑒定,最終鑒定獲得恢復突變體菌株HD(ΔcwlC::cwlC)。
為構建cwlC基因報告載體,以B.thuringiensis HD73基因組DNA為模板和PcwlC-5/PcwlC-3為引物,通過PCR擴增出大小為717bp的cwlC啟動子區(qū)DNA片段。將上述擴增產生的DNA片段和pHT304-18Z表達質粒(Agaisse H,Lereclus D.1994.Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis.Mol Microbiol13:97–107.)同時進行PstI和BamHI雙酶切,通過T4連接酶連接,獲得重組質粒pHTPcwlC。將該質粒通過電擊分別轉化進B.thuringiensis HD73,sigK和gerE突變體,最終獲得均含有重組質粒pHTPcwlC的HD(PcwlC-lacZ)、HD(ΔsigK)(PcwlC-lacZ)和HD(ΔgerE)(PcwlC-lacZ)菌株。
為確定CwlC蛋白在細胞中的亞細胞定位,構建了cwlC和gfp融合載體pHT-gfp-cwlC。具體方法如下:以B.thuringiensis HD73基因組DNA為模板,以gfp-cwlC-A/gfp-cwlC-B為引物,通過PCR擴增出大小為685bp的cwlC啟動子區(qū)DNA片段;以gfp-cwlC-E/gfp-cwlC-F為引物,擴增出大小為732-bp的cwlC ORF區(qū)DNA片段。以Cry1Ac-GFP質粒為模板(Yang H,Wang P,Peng Q,Rong R,Liu C,Lereclus D,Zhang J,Song F,Huang D.2012.Weak transcription of the cry1Ac gene in nonsporulating Bacillus thuringiensis cells.Appl Environ Microbiol78:6466–6474.),以gfp-cwlC-C/gfp-cwlC-D為引物擴增出包括gfp基因和48-bp linker大小為762bp的DNA片段。以gfp-cwlC-A/gfp-cwlC-F為引物,通過重疊PCR擴增將cwlC promoter,gfp gene+linker,和cwlC ORF三個DNA片段按順序重疊成一個2,179bp大小的DNA片段。將上述擴增產生的DNA片段和pHT304-18Z表達質粒(Agaisse H,Lereclus D.1994.Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis.Mol Microbiol13:97–107.)同時進行EcoRI和PstI雙酶切,通過T4連接酶連接,獲得重組質粒pHT-gfp-cwlC。該重組質粒通過電擊轉化進B.thuringiensis HD73細胞中,獲得重組菌株HD(pHT-gfp-cwlC)。
為構建CwlC蛋白表達菌株,以B.thuringiensis HD73基因組DNA為模板,以cwlC-F/cwlC-R為引物,通過PCR方法擴增出大小為732bp的DNA片段。將上述擴增的DNA片段和pET21b表達質粒(Agaisse H,Lereclus D.1994.Structural and functional analysis of the promoter region involved in full expression of the cryIIIA toxin gene of Bacillus thuringiensis.Mol Microbiol13:97–107.)同時進行EcoRI和PstI雙酶切,通過T4連接酶連接,獲得重組質粒pETcwlC。該重組質粒通過熱擊轉化進E.coli BL21細胞中進行CwlC蛋白表達。
β-galactosidase活性測定實驗:在指定的時間范圍內(T8-T20)每隔1小時收集培養(yǎng)在SSM中的B.thuringiensis細胞,用來測定不同時間點B.thuringiensis細胞中的β-galactosidase活性,詳細方法參照文獻(Millet JH,Experiments in molecular genetics,1972,Cold Spring Harbor Press:Cold Spring Harbor,NY.)。所有數(shù)據(jù)均進行至少3次的獨立重復實驗。
CwlC-His蛋白的純化:CwlC蛋白純化方法參照文獻(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.)進行。E.coli BL21(pETcwlC)菌株用作表達CwlC-His蛋白。具體方法如下:BL21(pETcwlC)菌株培養(yǎng)在300ml加氨芐青霉素(100μg/ml)LB培養(yǎng)基中,在37℃,220rpm條件下培養(yǎng)至OD600(600nm處光密度)為1.0時加入終濃度為0.5mM的IPTG,在18℃,150rpm條件下再培養(yǎng)12個小時。然后將菌液在4℃10000×g條件下離心10分鐘,用蒸餾水將收集的細胞洗滌3次。用50mM Tris-HCl(pH 8.3)(每300ml菌液收集的菌體用60ml的Tris-HCl懸起)將收集到的細胞懸起來,并放置在冰水混合物上,用70%功率超聲破碎5min。細胞裂解液在4℃10000×g條件下離心10分鐘用來去除細胞碎片。上清和沉淀中的蛋白通過SDS聚丙烯酰胺凝膠電泳(SDS-PAGE)進行分析(Laemmli UK.1970.Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature 227:680–685.)。含有大量CwlC-His蛋白的上清經鎳離子螯合柱,將CwlC-His蛋白通過螯合作用留在柱子上,而非特異性結合的的雜蛋白用50mM咪唑緩沖液(50mM imidazole,1M NaCl,20Mm Tris-HCl)洗脫除去。最終,CwlC-His蛋白50mM咪唑緩沖液(250mM imidazole,1M NaCl,20Mm Tris-HCl)洗脫并收集起來。
細胞壁的制備:B.thuringiensis HD73細胞于LB培養(yǎng)中培養(yǎng)至對數(shù)生長晚期,在4℃16,000×g條件下離心10分鐘收集,而后用去離子水洗滌三次。收集的細胞用TK buffer(0.05M Tris-HCl,0.05M KCl)(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.)懸起來,分裝在2ml離心管中,加入適量的0.1-mm玻璃珠用震蕩破碎儀(Biospec Products,Inc.,Bartlesville,OK,USA)震蕩破碎1min 40s。破碎的細胞液在4℃1,000×g條件下低速離心10min,離心后的上清液在4℃27,000×g條件下高速離心5min,離心后的沉淀物即是粗制的細胞壁。粗制的細胞壁懸在5ml 4%(W/V)的SDS中煮沸10min,用1M NaCl洗滌兩次,和去離子水洗滌3次后,制備好的細胞壁保存在-80℃?zhèn)溆?Fein JE,Rogers HJ.1976.Autolytic enzyme-deficient mutants of Bacillus subtilis 168.J Bacteriol127:1427–1442.,Kuroda A,Sekiguchi J.1990.Cloning,sequencing and genetic mapping of a Bacillus subtilis cell wall hydrolase gene.J GenMicrobiol136:2209–2216.)。
CwlC蛋白的細胞壁結合能力:CwlC蛋白的細胞壁結合能力實驗參考Nugroho et al(Nugroho FA,Yamamoto H,Kobayashi Y,Sekiguchi J.1999.Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.)實驗方法進行。具體方法如下:純化的CwlC蛋白加入懸在蒸餾水中的細胞壁中,并在冰上孵育30min,隨后在4℃27,000×g條件下離心5min。離心后的沉淀物進行聚丙烯酰胺凝膠電泳,經western blot分析,以確定CwlC蛋白與細胞壁的結合情況???×His標簽的抗體用來驗證CwlC蛋白。
CwlC蛋白水解細胞壁:CwlC蛋白水解B.thuringiensis細胞壁的具體實驗方法如下:純化的CwlC蛋白加入懸在TK buffer(0.05M Tris-HCl,0.05M KCl,pH 7.0)的B.thuringiensis細胞壁中,混合液的OD540為0.3左右。隨后,混合液在37℃分別孵育0,10,20,40和60min后進行吸光度測定。細胞壁水解酶的活性單位被定義為每分鐘使OD540減少0.001所用的酶量(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.,Ayusawa D,Yoneda Y,Yamane K,Maruo B.1975.Pleiotropic phenomena in autolytic enzyme(s)content,flagellation,and simultaneous hyperproduction of extracellular alpha-amylase and protease in a Bacillus subtilis mutant.J Bacteriol124:459–469.)。
聚光共聚焦顯微鏡觀察:為研究CwlC蛋白的亞細胞定位,將含有重組質粒的pHT-gfp-cwlC的B.thuringiensis HD73菌株培養(yǎng)在SSM培養(yǎng)基中,在指定的時間點取1ml的菌液收集菌體。收集的菌體細胞用去離子水洗滌3次后懸在50μl去離子水中。隨后,1μl懸起的細胞加入適量的細胞膜染液FM4-64(100μM;Thermo Scientific,United States of America)在冰上染色1min。染色后的樣品用聚光共聚焦顯微鏡(Leica TCS SL;Leica Microsystems,Wetzlar,Germany)進行觀察。
Cry1Ac晶體蛋白定量:B.thuringiensis HD73野生株和HD(ΔcwlC)突變體菌株,在SSM培養(yǎng)基30℃條件下培養(yǎng)至T24。取出T24時期2ml的菌液進行12,000rpm離心1min,將收集的菌體懸在500μl的Tris-HCl(50Mm,pH 8.0)中,加入適量的0.1-mm玻璃珠用震蕩破碎儀進行細胞破碎。取菌體破碎后的上清進行SDS-PAGE分析(Millet JH,Experiments in molecular genetics,1972,Cold Spring Harbor Press:Cold Spring Harbor,NY.,Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.)。
光學顯微鏡觀察和芽胞形成率實驗:野生菌株HD73和突變體菌株HD(ΔcwlC)在100ml SSM培養(yǎng)基中和30℃220rpm條件下培養(yǎng)。在指定的時間點(T0,T16,T24,day3,day7,和day15)分別取出1ml菌液進行離心,將收集的菌體懸在適量的去離子水中。每個樣品取1μl用BX61光學顯微鏡(Olympus Corporation,Japan)進行觀察。芽胞形成率的實驗方法參考文獻(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.,Zhang Z,Yang M,Peng Q,Wang G,Zheng Q,Zhang J,Song F.2014.Transcription of the lysine-2,3-aminomutase gene in the kam locus of Bacillus thuringiensis subsp.kurstaki HD73is controlled by bothσ54andσK factors.J Bacteriol196:2934–2943.)進行。
CwlC蛋白水解B.thuringiensis和B.cereus活細胞細胞壁實驗:B.thuringiensis和B.cereus菌株在100ml LB培養(yǎng)基中和37℃220rpm條件下培養(yǎng)至對數(shù)生長期,經離心收集菌體,用PBS buffer(0.2M,pH 6.5)洗滌兩次,然后懸在0.2M PBS buffer中使OD600為0.6左右。純化的CwlC蛋白(15μg)加入懸起的菌體中,混合液在37℃分別孵育0,10,20,30,和40min,而后分別進行OD600吸光值測定(BioTek Instruments,Inc.United States of America)。
結果和分析:
cwlC基因序列和轉錄調控分析:首先我們對B.thuringiensis HD73基因組(Accession No.NC_020238.1)中RS15875基因的開放閱讀框(圖1中A)進行了分析。RS15875基因的大小為735bp,見SEQ ID NO:1,編碼一種細胞壁水解酶。蛋白二級結構分析(http://www.ncbi.nlm.nih.gov)表明RS15875基因編碼的蛋白由N-末端MurNAc-LAA結構域和C-末端amidase02-C結構域(圖1中B)組成,該結構域組成與B.subtilis CwlC和CwlH蛋白高度相似(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.)。RS15875編碼的蛋白也和B.thuringiensis CwlB有相似的結構組成,B.thuringiensis CwlB包含一個N-末端MurNAc-LAA結構域和C-末端細胞壁結合結構域。因此,RS15875暫時被命名為cwlC(cell wall lysis C)。
為了驗證B.thuringiensis CwlC蛋白在B.cereus、B.anthracis和其他B.thuringiensis菌株中的保守性分布,通過NCBI BlastP分析,發(fā)現(xiàn)與CwlC蛋白相似性在90%以上的蛋白多達100多種,他們廣泛地分布在B.thuringiensis、B.cereus及其它蠟樣芽胞桿菌族菌株中,但并沒有出現(xiàn)在B.anthracis或B.pseudomycoides菌株中(圖8)。
通過B.thuringiensis HD73基因組序列分析,發(fā)現(xiàn)RS15870、cwlC和RS15880基因轉錄方向一致。為確定cwlC與上下游基因的轉錄關系,我們提取了培養(yǎng)在SSM培養(yǎng)基中生長至T15時期的B.thuringiensis HD73細胞中的總RNA,用來進行RT-PCR分析。為此,我們也根據(jù)RS15870、cwlC和RS15880基因序列設計了3對引物,RTcwlC-5/RTcwlC-3、RTC55-5/RTC55-3和RTC57-5/RTC57-3,用來進行RT-PCR實驗(圖1中A和表2)。RT-PCR結果表明cwlC mRNA在T15時期是存在的,但RS15870和cwlC,cwlC和RS15880之間的mRNA并沒有檢測到(圖1中C)。這些發(fā)現(xiàn)表明cwlC基因進行單獨轉錄,并不和它的上下游基因形成共轉錄單元(圖1中A)。
cwlC基因的轉錄調控:為確定cwlC基因的轉錄起始位點,我們進行了5’-RACE-PCR實驗。5’-RACE-PCR擴增產生的DNA片段克隆進PMD-19T載體,并轉化進E.coli TG1中。隨機挑取12個轉化子進行測序,測序結果表明,cwlC基因的轉錄起始位點是位于該基因起始密碼子(ATG)上游的第21個堿基“G”處(圖2中A)。
對cwlC基因啟動子進行分析,發(fā)現(xiàn)位于轉錄起始位點上游-35和-10區(qū)域的σk保守結合序列AGCA和AATAAGATA(HDCA和CATANNNDD;H is A/C/T,D is A/G/T和N is A/C/G/T)(Eichenberger P,Fujita M,Jensen ST,Conlon EM,Rudner DZ,Wang ST,Ferguson C,Haga K,Sato T,Liu JS,Losick R.2004.The program of gene transcription for a single differentiating cell type during sporulation in Bacillus subtilis.PLoS Biol2:e328.(圖2中A)。上述分析結果表明cwlC基因轉錄可能受σk的控制。同時,在啟動子上游-270bp至-266bp區(qū)域發(fā)現(xiàn)外殼蛋白轉錄激活因子GerE蛋白的保守序列TAGGT(TPuGGPy;Pu,purine;Py,pyrimidine)(Nugroho FA,Yamamoto H,Kobayashi Y,Sekiguchi J.1999.Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.)(圖2中A)。為驗證cwlC基因是否受σk和GerE的轉錄調控,構建了cwlC啟動子和lacZ的融合載體pHTPcwlC,分別轉化進野生菌株HD73、突變體HD(ΔsigK)和突變體HD(ΔgerE)中(詳見材料方法),獲得菌株HD(PcwlC-lacZ)、HD(ΔsigK)(PcwlC-lacZ)和HD(ΔgerE)(PcwlC-lacZ)。對HD(PcwlC-lacZ)菌株的β-galactosidase活性測定,發(fā)現(xiàn)其從T8開始轉錄,T14轉錄活性值最高(圖2中B)。該結果表明cwlC基因是在芽胞期進行表達。HD(ΔsigK)(PcwlC-lacZ)菌株的β-galactosidase活性測定結果顯示β-galactosidase在該菌株中活性完全喪失(圖2中B)。HD(ΔgerE)(PcwlC-lacZ)菌株的β-galactosidase活性測定結果顯示,β-galactosidase從T8轉錄且活性值升高緩慢,其整體活性值低于HD(PcwlC-lacZ)菌株的(圖2中B)。這些結果表明cwlC基因受σk的控制和GerE的正調控。
cwlC基因缺失可阻斷母細胞的裂解:為研究cwlC基因的功能,我們通過同源重組的方法將卡那霉素抗性基因替換cwlC基因構建了cwlC基因缺失突變體HD(ΔcwlC)(圖1中A)(詳見材料與方法)。cwlC基因的缺失并沒影響細胞的生長(數(shù)據(jù)未顯示)。然后,我們通過光學顯微鏡觀察了培養(yǎng)在SSM培養(yǎng)基中的野生菌株HD73和突變體HD(ΔcwlC)在不同時期的細胞形態(tài)。觀察結果顯示,突變體HD(ΔcwlC)菌株在T0和T16時期與野生菌株HD73形態(tài)并無明顯區(qū)別,在T0和T16時期他們的母細胞均未裂解(圖3中A)。有趣的是,在T24時期時,野生菌株HD73大多數(shù)母細胞裂解并釋放出了晶體和芽胞,而突變體HD(ΔcwlC)菌株并沒有出現(xiàn)裂解現(xiàn)象。緊接著構建了突變株HD(ΔcwlC)的恢復株HD(ΔcwlC::cwlC),恢復株的細胞在T16開始裂解,T24時期已裂解完全。
為進一步確定突變株HD(ΔcwlC)的表型,我們繼T24時期后接著觀察突變株HD(ΔcwlC)表型。令人驚奇地是,我們發(fā)現(xiàn)突變株HD(ΔcwlC)的母細胞知道培養(yǎng)到第15天也并未發(fā)生裂解,晶體和芽胞一直包裹在母細胞內(圖3中B)。
實驗結果表明,水解酶CwlC在母細胞裂解方面起著關鍵性的作用。
細胞壁水解酶基因cwlC的缺失并沒有影響芽胞的形成和晶體蛋白的產量。已有研究表明水解酶的缺失并不影響芽胞的形成(Nugroho FA,Yamamoto H,Kobayashi Y,Sekiguchi J.1999.Characterization of a new sigma-K-dependent peptidoglycan hydrolase gene that plays a role in Bacillus subtilis mother cell lysis.J Bacteriol181:6230–6237.)。另外,B.thuringiensis因產生殺蟲晶體蛋白而作為生防菌被廣泛地應用于農業(yè)生產上。因此,我們測定了突變體的芽胞形成率和晶體蛋白的產量(詳見材料方法)。結果表明,野生菌株HD73、突變體HD(ΔcwlC)和恢復菌株HD(ΔcwlC::cwlC)的芽胞形成率并未有明顯差異(圖4中A)。通過總蛋白定量法確定野生菌株HD73和突變體HD(ΔcwlC)晶體蛋白產量,結果表明位于約130kDa處的Cry蛋白產量未有明顯差異(圖4中B)。因此,我們得出結論,cwlC基因的缺失并沒有影響芽胞的形成和晶體蛋白的產量。這有助于以cwlC基因為分子基礎構建的工程菌在生產上更好更廣泛的應用。
CwlC蛋白的生化特征。如圖1中B所示,CwlC包含有一個N-末端的MurNAc-LAA家族結構域,該結構域的功能可剪切位于MurNAc(N-乙酰胞壁酸)和L-丙氨酸氨基之間形成的酰胺鍵(Yang J,Peng Q,Chen Z,Deng C,Shu C,Zhang J,Huang D,Song F.2013.Transcriptional regulation and characteristics of a novel N-acetylmuramoyl-L-alanine amidase gene involved in Bacillus thuringiensis mother cell lysis.J Bacteriol195:2887–2897.);因此,它被預測為一種MurNAc-LAA(Cibik R,Chapot-Chartier MP.2000.Autolysis of dairy leuconostocs and detection of peptidoglycan hydrolases by renaturing SDS-PAGE.J Appl Microbiol89:862–869.,Vollmer W,Joris B,Charlier P,Foster S.2008.Bacterial peptidoglycan(murein)hydrolases.FEMS Microbiol Rev32:259–286.)。CwlC也包含一個C-末端結構域,因此,我們通過Western Blot方法來驗證純化的CwlC蛋白與B.thuringiensis細胞壁結合的特異性。CwlC-His蛋白在E.coli中表達并純化(詳見材料方法),純化的CwlC-His蛋白進行SDS-PAGE。電泳結果顯示純化的蛋白條帶單一,條帶的位置與預測的27.9kDa大小相符(圖5中A),對該蛋白條帶進行質譜測序驗證(Beijing Protein Innovation Co.,Ltd,Beijing,China),結果表明其確為CwlC-His蛋白。
表達于E.coli中的B.thuringiensis CwlC蛋白,CwlC-His,和同樣表達于E.coli中的B.thuringiensis蛋白,SigK-His,用來驗證CwlC蛋白的細胞壁結合能力。SigK-His因缺少細胞壁結合結構域而作為本實驗的陰性對照。CwlC-His也用作對照來避免因蛋白本身的沉淀給實驗結果造成干擾。蛋白和細胞壁的混合物的OD540調至0.3左右,在0℃孵育30min,而后離心(詳見材料方法)。Western blot結果顯示CwlC-His與細胞壁孵育離心后的沉淀物中可檢測到CwlC-His蛋白的存在,在用buffer代替細胞壁與CwlC-His孵育的沉淀物中未檢測到CwlC-His的存在,在SigK-His與與細胞壁孵育離心后的沉淀物中未檢測到SigK-His的存在(圖5中B)。該結果表明CwlC-His可與體外制備的細胞壁結合。
為驗證CwlC-His蛋白的水解B.thuringiensis細胞壁的能力,將含有CwlC蛋白和細菌細胞壁的混合物在37℃孵育0,10,20,40,或60min,分別在上述的時間點取500μl來測定OD540,混合物的密度在60min時降低了50%左右(圖5中C),該結果表明CwlC-His水解酶可水解B.thuringiensis細胞壁。
CwlC的亞細胞定位。為研究CwlC蛋白在B.thuringiensis細胞中的定位并進一步闡明它的功能,我們將gfp基因融合到cwlC基因的5′端構建了重組載體pHT-gfp-cwlC(圖6中A),緊接著電擊轉化進B.thuringiensis HD73細胞中,獲得菌株HD(pHT-gfp-cwlC)。該菌株培養(yǎng)在SSM培養(yǎng)基中至芽胞期,分別取T16和T20時期的樣品,用FM4-64對樣品細胞膜染色,gfp基因產生的綠色熒光蛋白(GFP)用來指示CwlC蛋白在B.thuringiensis細胞中的位置。通過激光共聚焦顯微鏡(CLSM)觀察發(fā)現(xiàn),T16時期細胞出現(xiàn)小部分的裂解,GFP發(fā)光位置顯示CwlC定位在未裂解細胞的細胞壁上(圖6中B,黃色箭頭)。在T20時期,大多數(shù)細胞裂解并釋放出晶體和芽胞,在剛發(fā)生裂解的細胞中僅存微弱的綠色熒光信號(圖6中B,藍色箭頭),并且在釋放的晶體和芽胞中并沒有發(fā)現(xiàn)綠色熒光信號(圖6中B,白色箭頭)。這些觀察結果表明,CwlC定位在細胞壁上,并且只表達于母細胞中,在芽胞和晶體中不表達。
CwlC蛋白可水解有活性的B.thuringiensis和B.cereus菌株細胞的細胞壁。因CwlC可直接水解制備好的B.thuringiensis細胞壁(圖5中C),于是我們提出疑問是否體外的CwlC水解酶以相同的機制水解B.thuringiensis和B.cereus菌株完整細胞的細胞壁。在加入CwlC蛋白40分鐘內,B.thuringiensis(圖7中A)和B.cereus ATCC 14579(圖7中B)細胞的OD600值急劇下降,然而遺憾的是,我們并沒觀察到B.thuringiensis和B.cereus ATCC 14579菌株細胞數(shù)量上的變化(數(shù)據(jù)未顯示)。另外,CwlC蛋白對B.thuringiensis細胞壁的水解效率高于B.cereus的((圖7)。
SEQUENCE LISTING
<110> 中國農業(yè)科學院植物保護研究所
<120> 水解酶CwlC在蠟狀芽胞桿菌族母細胞裂解中的應用
<130> PP17007-ZWB
<160> 2
<170> PatentIn version 3.3
<210> 1
<211> 735
<212> DNA
<213> RS15875暫時被命名為cwlC(cell wall lysis C)基因序列
<400> 1
atggctagat atagtttgca cggaggacac aatagtattg ttcaaggtgc taatttcggg 60
aatcggaaag aacacgttct agataggcaa gttaaagatg ccgtggcggc taagttaaga 120
gccctaggac acacggttta tgacgatacg gacgaggtag gggcaactca atcacaaaat 180
ttaaataata tcattcggaa tagcaattcc catgctgtgg atttagttat ttcttttcat 240
cttaatgcaa gtgatggaaa tggacagggt gttgaggttt tatattatga tcagaaagat 300
ttggcggcta aaatctcagc tcaactagca aaagatattg gatggcgtga tcgaggtgcg 360
aaacaacgta cagatttagc agtattaaat ggaacgaagg caccggctat tcttattgaa 420
ttagggttta ttgataatga atccgacatg gcaaaatgga atgttgataa aatcgctaat 480
tctattgtat ttgctcttac aggacaaact ggaggaggtg cagcgaattt gctcaaagta 540
aaaactggtg gtgtagcatt tagtaattta caagatttgg ctcaagctat ggttgatgcg 600
ggtattgatg gacaaattgt cgttcaaaaa gatggcattg gttatgctat aacgaatggc 660
tatccgtccg ggaatatcga taaatttaca gcttggttag atgcacgtaa atggtactat 720
gagtacgtga gataa 735
<210> 2
<211> 244
<212> PRT
<213> RS15875暫時被命名為cwlC(cell wall lysis C)蛋白序列
<400> 2
Met Ala Arg Tyr Ser Leu His Gly Gly His Asn Ser Ile Val Gln Gly
1 5 10 15
Ala Asn Phe Gly Asn Arg Lys Glu His Val Leu Asp Arg Gln Val Lys
20 25 30
Asp Ala Val Ala Ala Lys Leu Arg Ala Leu Gly His Thr Val Tyr Asp
35 40 45
Asp Thr Asp Glu Val Gly Ala Thr Gln Ser Gln Asn Leu Asn Asn Ile
50 55 60
Ile Arg Asn Ser Asn Ser His Ala Val Asp Leu Val Ile Ser Phe His
65 70 75 80
Leu Asn Ala Ser Asp Gly Asn Gly Gln Gly Val Glu Val Leu Tyr Tyr
85 90 95
Asp Gln Lys Asp Leu Ala Ala Lys Ile Ser Ala Gln Leu Ala Lys Asp
100 105 110
Ile Gly Trp Arg Asp Arg Gly Ala Lys Gln Arg Thr Asp Leu Ala Val
115 120 125
Leu Asn Gly Thr Lys Ala Pro Ala Ile Leu Ile Glu Leu Gly Phe Ile
130 135 140
Asp Asn Glu Ser Asp Met Ala Lys Trp Asn Val Asp Lys Ile Ala Asn
145 150 155 160
Ser Ile Val Phe Ala Leu Thr Gly Gln Thr Gly Gly Gly Ala Ala Asn
165 170 175
Leu Leu Lys Val Lys Thr Gly Gly Val Ala Phe Ser Asn Leu Gln Asp
180 185 190
Leu Ala Gln Ala Met Val Asp Ala Gly Ile Asp Gly Gln Ile Val Val
195 200 205
Gln Lys Asp Gly Ile Gly Tyr Ala Ile Thr Asn Gly Tyr Pro Ser Gly
210 215 220
Asn Ile Asp Lys Phe Thr Ala Trp Leu Asp Ala Arg Lys Trp Tyr Tyr
225 230 235 240
Glu Tyr Val Arg