亚洲成年人黄色一级片,日本香港三级亚洲三级,黄色成人小视频,国产青草视频,国产一区二区久久精品,91在线免费公开视频,成年轻人网站色直接看

一種適用于多種天線配置的大規(guī)模MIMO軟檢測方法與流程

文檔序號:11479599閱讀:285來源:國知局
一種適用于多種天線配置的大規(guī)模MIMO軟檢測方法與流程

本發(fā)明涉及無線通信技術(shù)領(lǐng)域,尤其涉及一種適用于多種天線配置的大規(guī)模mimo軟檢測方法。



背景技術(shù):

新興的大規(guī)模多輸入多輸出“l(fā)argescale-multiple-inputmultiple-output”(ls-mimo)又稱“massivemimo”(m-mimo)系統(tǒng)已經(jīng)成為下一代移動通信中的關(guān)鍵技術(shù)和目前移動通信領(lǐng)域的熱門話題。與傳統(tǒng)單輸入單輸出系統(tǒng)相比。在mimo系統(tǒng),有多個干擾消息/符號在發(fā)射端發(fā)出,而在接收機處,這些受到隨機噪聲污染或干擾的符號則需要被檢測/解碼。這多個符號可以單獨地或聯(lián)合地檢測。與獨立檢測不同,在聯(lián)合檢測中,每個符號在檢測時必須考慮其他符號的特性。因此,聯(lián)合檢測通常能夠?qū)崿F(xiàn)比單獨檢測更好的性能,相應的聯(lián)合檢測計算復雜度更高。

mimo系統(tǒng)中多個符號的聯(lián)合檢測是為了實現(xiàn)mimo技術(shù)的多種益處。這是因為共信道干擾(cci)是通信系統(tǒng)受限的最本質(zhì)原因。不幸的是,最優(yōu)mimo檢測問題被證明是非多項式時間復雜度的(np-hard),因此,所有已知的為解決此問題而構(gòu)思的最優(yōu)化算法其復雜度隨著決策變量的數(shù)量呈指數(shù)增長。因此,最佳基于最大似然(ml)準則或基于最大后驗(map)標準的最優(yōu)mimo檢測算法因為其過高的計算復雜度而變得無法應用于大規(guī)模mimo系統(tǒng)。然而隨著半導體工業(yè)的發(fā)展,硬件計算能力多年來一直在急劇增加,在某些情況下“不那么極端”的計算復雜性不再被考慮作為實際應用的瓶頸。但是,應該注意的是,盡管晶體管越來越快,在現(xiàn)代金屬氧化物半導體(cmos)工藝中電源電壓并不能顯著降低。因此,幾乎所有現(xiàn)代集成電路(ic)都會受限于最大集成密度,這個限制是由于過剩的功率消耗和功率密度導致的過高的芯片內(nèi)部溫度帶來的。換句話說,這個問題,仍然限制了今天的ic開發(fā)。因此,人們不能簡單地依靠摩爾定律,其結(jié)果是,即使適度復雜度mimo檢測算法仍然太耗電。因此,復雜度低但性能次最佳mimo檢測器是實際mimo應用需要算法。

下面從系統(tǒng)模型開始,對ls-mimo檢測的關(guān)鍵問題和難點進行分析:圖1顯示的是一個典型的mimo模型,其中,基站(b個天線)與用戶(u個單天線用戶)為例(b>u)。在上行傳輸中(用戶到基站),由于基站具備強大的計算能力,可以利用導頻序列估計出信道,因此上行鏈路的檢測可以直接進行;在下行傳輸中(基站到用戶),由于每個用戶是獨立的,而基站的信號是同時發(fā)給多個用戶的,因此下行鏈路的檢測需要基站端提前做預編碼以消除用戶間干擾,再由用戶端做檢測。本設(shè)計主要研究上行路,其傳輸模型可以表示為:y=hx+n(h為b*u的信道矩陣)那么我們要解出x就要兩邊乘均衡矩陣a,得到估計的發(fā)射信號:x’=a*y=a*hx+a*n。為了得到精確的估計值,就需要a*h=i.均衡矩陣a的選取有很多種,最簡單的一種是取a為h的偽逆,這便是著名的破零均衡(zf);為了提高精確度,a還可以是滿足最小均方誤差準則(mmse)的均衡矩陣。然而無論是破零準則還是最小均方誤差準則,其均衡矩陣均需要計算矩陣的逆,對于ls-mimo系統(tǒng)來說,雖然這一類線性算法已經(jīng)是非常簡單的了,但是仍然復雜度較高。因此就帶來了幾個難點:1、求逆的硬件設(shè)計,我們知道大矩陣的求逆對硬件成本要求極高,同時復雜的計算會造成吞吐量的嚴重下降,也就是說此處的成為mimo效率的瓶頸所在。2、除了求逆部分的算法外,本身算式中涉及到了多處的矩陣乘法,這些大矩陣的乘法設(shè)計也制約了硬件的效率。

對于求逆的方案本來在數(shù)學上就是很多種,有精確求法,有通過迭代近似求法的。對其需要從檢測效果,硬件成本以及吞吐率上進行研究對比,得出較優(yōu)的方案。但是三個考慮的方向本身就是矛盾的,如果需要更好的精確度那么硬件上必然會吃點虧,所以說方案很多,但是找到矛盾的平衡點卻成了問題的關(guān)鍵所在,如何通過合理的近似優(yōu)化對一些經(jīng)典理論構(gòu)架進行改進從而達到更好的效果,也成了突破口。

同時,對于不同框架的判別還需要依賴一個重要的因素,就是信道。文獻中提到比較多的都是高斯理想信道。但是在實際生活中,不可能保證信道的理想性,那么建立一個參數(shù)可控的非理想信道成為了本次研究的前提。在非理想信道下,檢測模塊的性能與硬件成本的多方考察更加有實際意義。



技術(shù)實現(xiàn)要素:

發(fā)明目的:本發(fā)明針對現(xiàn)有技術(shù)存在的問題,提供一種適用于多種天線配置的大規(guī)模mimo軟檢測方法。本發(fā)明針對更為普遍的天線配置,為了提高迭代算法的收斂速度,首先提出了一種基于相關(guān)系數(shù)和用戶基站天線比的ldl預處理的最速下降檢測方法,并給出其基于fpga的硬件設(shè)計。為了降低預處理帶來的復雜度,本發(fā)明利用閾值使得檢測矩陣中的元素置零,以簡化計算;針對軟檢測中復雜度最高的llr(對數(shù)似然比)部分,本發(fā)明利用預處理得到的產(chǎn)物直接進行計算,大大降低了復雜度;在硬件方面,本發(fā)明首先提出了基于ldl預處理的最速下降檢測的硬件架構(gòu)以及其優(yōu)化。

技術(shù)方案:本發(fā)明所述的適用于多種天線配置的大規(guī)模mimo軟檢測方法包括:

根據(jù)非理想信道的信道響應矩陣h構(gòu)造mmse檢測矩陣a;

根據(jù)檢測矩陣a和信道相關(guān)系數(shù)對檢測矩陣的每一列設(shè)置閾值;

根據(jù)設(shè)置的閾值對檢測矩陣a進行不完全分解獲得預處理矩陣d和l;

根據(jù)預處理矩陣d和l,采用最速下降法對經(jīng)接收端匹配濾波器輸出的接收信號矩陣進行軟檢測得到發(fā)射信號估計值

進一步的,所述根據(jù)非理想信道的信道響應矩陣h構(gòu)造mmse檢測矩陣a,具體包括:

根據(jù)非理想信道的信道響應矩陣h按照以下公式構(gòu)造出mmse檢測矩陣a:

式中,n0是噪聲方差,es是發(fā)射信號的平均功率,ι是單位矩陣。

進一步的,所述根據(jù)檢測矩陣a、矩陣規(guī)模和信道相關(guān)系統(tǒng)對檢測矩陣的每一列設(shè)置閾值,具體包括:

根據(jù)檢測矩陣a和信道相關(guān)系數(shù)對檢測矩陣的每一列設(shè)置閾值,其中,第i行的閾值為:

式中,i=1,2,…,n,因a為方陣,n為檢測矩陣a的維數(shù),為信道相關(guān)系數(shù),b為基站個數(shù),u為用戶端天線數(shù),a(i,i)為檢測矩陣a的第i行第i列的元素。

進一步的,所述根據(jù)設(shè)置的閾值對檢測矩陣a進行不完全分解獲得預處理矩陣d和l,具體包括:

(1)將d(1,1)=a(1,1),其中,形如δ(·,*)表示矩陣δ的第·行第*列的元素;

(2)設(shè)置i=2;

(3)判斷a(i,j)是否大于或等于pi,其中,j=1,2,...,i-1,若是,則執(zhí)行步驟(4);

(4)按照下式計算:

(5)將i=i+1,并返回(3)進行循環(huán),直至i=n,n為檢測矩陣a的維數(shù);

(6)根據(jù)計算得到的d(i,j)整合得到對角矩陣d,根據(jù)計算得到的l(i,j)整合得到下三角矩陣l。

進一步的,所述根據(jù)預處理矩陣d和l,采用最速下降法對經(jīng)接收端匹配濾波器輸出的接收信號矩陣進行軟檢測得到發(fā)射信號估計值具體包括:

(1)初始化:x0=0,

(2)設(shè)置迭代次數(shù)d=1;

(3)按照以下公式計算:

(4)將d=d+1,并返回至(3),直至迭代到預設(shè)次數(shù)m為止,則xm為發(fā)射信號矩陣估計值

進一步的,該方法還包括:

根據(jù)l和d,以計算對數(shù)似然比。

式中,n0是噪聲方差,es是發(fā)射信號的平均功率,表示的第g個符號,d(g,g)是d第g行第g列的元素,q0是屬于星座集qb=0的bit為0的符號,q1是是屬于星座集qb=1的bit為1的符號。

有益效果:本發(fā)明與現(xiàn)有技術(shù)相比,其顯著優(yōu)點是:1、本發(fā)明從提高大規(guī)模mimo迭代檢測算法的性能出發(fā),提出了在迭代前預先對系數(shù)矩陣進行處理的方法,提高了迭代檢測在多種mimo場景(信道的相關(guān)性和系統(tǒng)規(guī)模的擴大時)下的檢測性能。2、本發(fā)明綜合考慮到了性能提高所帶來的復雜度的提高。從多個角度減少復雜度:首先,迭代部分選用最簡單的最速下降迭代方法,其每一步迭代比普關(guān)注的共軛梯度法少一個矩陣向量乘法,向量內(nèi)積計算,標量除法;其次,本方案直接利用預處理的結(jié)論,來計算傳統(tǒng)算法中復雜度最高的似然比系數(shù)的計算,大大降低了復雜度。3、本發(fā)明與現(xiàn)有迭代檢測方法相比適用于更加多變的信道模型和不斷擴大的系統(tǒng)規(guī)模,在惡劣條件下仍能保持低信噪比下的低誤碼率,更加滿足下一代移動通信對于檢測技術(shù)的要求。

附圖說明

圖1是mimo信道模型圖;

圖2是本發(fā)明的方法架構(gòu)圖;

圖3為本發(fā)明方法與共軛梯度迭代方法已經(jīng)喬里斯基直接求逆法在不同信道條件下的誤碼率表現(xiàn)比較圖;

圖4為本發(fā)明方法與共軛梯度迭代方法已經(jīng)喬里斯基直接求逆法在不同系統(tǒng)負載下的誤碼率表現(xiàn)比較圖;

圖5是本發(fā)明與傳統(tǒng)共軛梯度算法和喬里斯基分解精確求逆方法的復雜度對比圖。

具體實施方式

本實施例提供了一種適用于多種天線配置的大規(guī)模mimo軟檢測方法,其架構(gòu)如圖2所示。下面對本實施例進行詳細介紹。

1、信道模型

本實施例采用一個廣為人知的相關(guān)mimo信道模型是kronecker模型,描述為

其中分別為接收天線和發(fā)送天線的相關(guān)矩陣,為獨立同分布的瑞利衰落信道。二者構(gòu)造方式相同,下面給出接收端的相關(guān)矩陣rrx具體生產(chǎn)方式:

其中ζ(0≤ζ≤1)表示連續(xù)傳輸天線間的相關(guān)系數(shù)的數(shù)量級,當ζ=0時,為理想信道模型,當ζ=1時,表征相關(guān)性最大的信道傳輸情況,即最惡劣信道,ω為給定的相位,它并不影響對整個系統(tǒng)的性能。rrx(p,q)表示矩陣rrx的第p行第q列的元素值。

2、大規(guī)模mimo的mmse檢測模型

在大規(guī)模mimo系統(tǒng)中,一般有b>>u(基站天線數(shù)b遠大于用戶數(shù)u)。讓x表示u×1發(fā)射端發(fā)射的信號向量,x包含了從u個用戶產(chǎn)生的傳輸符號。h表示信道響應矩陣,故基站端的接收信號向量可以表示為

y=hx+n0

其中n0是一個b×1維的加性高斯白噪聲向量,其元素服從

基站的多用戶信號檢測任務(wù)就是從接收到的加噪聲信號向量y估計傳輸信號符號x。在本實施例中,假定接收機對信道矩陣是已知的。采用最小均方誤差(mmse)線性檢測理論,對傳輸信號向量的估計表示為

3、預處理

由于通過數(shù)學知識發(fā)現(xiàn),迭代算法的收斂速度取決于系數(shù)矩陣的條件數(shù),在本發(fā)明中對應矩陣a。具體來說即條件數(shù)越大收斂速度越慢。并且,隨著若用戶數(shù)與基站天線數(shù)的比值增大,或者信道相關(guān)系數(shù)增大,矩陣的條件數(shù)增大?;诖?,本發(fā)明提出如下閾值:

式中,i=1,2,…,n,n為檢測方陣a的維數(shù),為信道相關(guān)系數(shù),b為基站個數(shù),u為用戶端天線數(shù),a(i,i)為檢測矩陣a的第i行第i列的元素。

基于此閾值,對檢測矩陣a進行不完全分解獲得預處理矩陣d和l,具體包括:

(1)將d(1,1)=a(1,1),其中,形如δ(·,*)表示矩陣δ的第·行第*列的元素;

(2)設(shè)置i=2;

(3)判斷a(i,j)是否大于或等于pi,其中,j=1,2,...,i-1,若是,則執(zhí)行步驟(4);

(4)按照下式計算:

(5)將i=i+1,并返回(3)進行循環(huán),直至i=n,n為檢測矩陣a的維數(shù)(a為方陣);

(6)根據(jù)計算得到的d(i,j)整合得到對角矩陣d,根據(jù)計算得到的l(i,j)整合得到下三角矩陣l。

預處理可以提高該迭代算法的性能表現(xiàn)和收斂性能,本實施例采用不完全ldl分解產(chǎn)生預處理矩陣。其與傳統(tǒng)ldl分解的差別在于,本實施例為了降低復雜度,基于信道的相關(guān)系數(shù)和天線配比提出了閾值,對小于閾值的數(shù)據(jù)置零,使得原始的系數(shù)矩陣得以稀疏化。而傳統(tǒng)的ldl分解,對于一個稀疏矩陣分解的結(jié)果往往是稠密矩陣,但是本方案中,對于原始矩陣中的零原始不采用分解算法,只對于非零元素采用分解算法,從而保證了分解前后矩陣的稀疏性相同,降低復雜度。從而采用置零的方法降低復雜度。置零的與元素將不被保存和參與計算。另一方面,ldl預處理的結(jié)果可以直接用于計算檢測的軟信息(對數(shù)似然比率,llr)。

4、最速下降法軟檢測

根據(jù)預處理矩陣d和l,采用最速下降法對經(jīng)接收端匹配濾波器輸出的接收信號矩陣進行軟檢測得到發(fā)射信號估計值具體包括:

(1)初始化:x0=0,

(2)設(shè)置迭代次數(shù)d=1;

(3)按照以下公式計算:

(4)將d=d+1,并返回至(3),直至迭代到預設(shè)次數(shù)m為止,則xm為發(fā)射信號矩陣估計值

本實施例采用與普遍研究的共軛梯度法相比更為簡單的最速下降迭代法,每一次迭代過程中減少一個矩陣向量乘法,兩個向量內(nèi)積操作,一個標量除法。

5、計算對數(shù)似然比llr

根據(jù)下式計算

式中,表示的第g個符號,d(g,g)是d第g行第g列的元素,q0是屬于星座集qb=0的bit為0的符號,q1是是屬于星座集qb=1的bit為1的符號。由此可見,計算llr仍需求出檢測矩陣的逆。在本發(fā)明中,由于預處理部分得到的結(jié)果可以看做是檢測矩陣逆矩陣的近似,因此可以利用預處理得到的下三角系數(shù)矩陣l按如下方法計算:

最后對本實施例的方法與共軛梯度迭代方法已經(jīng)喬里斯基直接求逆法進行對比,結(jié)果如圖3、4、5所示,從圖中可以看出在性能上,本發(fā)明在各種信道條件下都能取得與喬里斯基直接求逆法較為接近的誤碼率表現(xiàn),在誤碼率為10-3時與共軛梯度法相比0.5到1db的增益。在不同系統(tǒng)負載情況下,三種方法在低負載下表現(xiàn)接近,但是在中負載和高負載情況下本發(fā)明都要優(yōu)于共軛梯度法。復雜度方面,本發(fā)明也是最優(yōu)的。

以上所揭露的僅為本發(fā)明一種較佳實施例而已,不能以此來限定本發(fā)明之權(quán)利范圍,因此依本發(fā)明權(quán)利要求所作的等同變化,仍屬本發(fā)明所涵蓋的范圍。

當前第1頁1 2 
網(wǎng)友詢問留言 已有0條留言
  • 還沒有人留言評論。精彩留言會獲得點贊!
1