本發(fā)明涉及一種考慮死區(qū)效應的雙有源橋DC-DC變換器最小電流應力控制方法。
背景技術:
DAB變換器因其高功率密度、雙向功率流動、結構對稱且易于實現(xiàn)零電壓開通等優(yōu)點,在分布式發(fā)電系統(tǒng)、交直流混合微電網(wǎng)等場合應用日趨廣泛。為實現(xiàn)DAB高效運行,研究者在控制策略方面做出很大努力,在傳統(tǒng)的單移相控制(single-phase-shift,SPS)的基礎之上,通過增加移相角,實現(xiàn)增強型移相控制(enhanced-phase-shift,EPS)、雙移相控制(dual-phase-shift,DPS)和三移相控制(triple-phase-shift,TPS)。隨著移相角數(shù)量增加,系統(tǒng)的控制靈活度增加,便于優(yōu)化,但與此同時,系統(tǒng)復雜性增加,控制難度增大。
當前,針對DAB系統(tǒng)的優(yōu)化控制不可謂不多,但這些優(yōu)化策略都沒有考慮死區(qū)效應的影響。為防止同一橋臂上下兩個開關管直通,死區(qū)的加入必不可少。但死區(qū)的引入,在不同條件下,會造成不同程度的波形畸變和功率損失,包括電壓極性反轉(zhuǎn)、電壓跌落、相位偏移等,而且隨著開關頻率的增加,死區(qū)造成的影響會越顯著。已有研究者對DAB的死區(qū)效應進行了分析,但其關注點僅限于SPS策略下的波形畸變和相位偏移,對于EPS、DPS和TPS策略還沒有系統(tǒng)的研究,而對于考慮死區(qū)的情況下如何選擇移相角的大小,從而實現(xiàn)優(yōu)化控制,更是沒有涉及。
技術實現(xiàn)要素:
本發(fā)明為了解決現(xiàn)有技術中針對于DAB系統(tǒng)的優(yōu)化控制均沒有考慮死區(qū)效應的影響的問題,提出了一種考慮死區(qū)效應的雙有源橋DC-DC變換器最小電流應力控制方法,本發(fā)明基于DPS控制策略,以電壓匹配情況為代表,對DAB的運行模式進行了詳細分析,得出各模式下的開關特性,并建立各模式的輸出功率模型。
另外,本發(fā)明的另一個目的是提供一種控制策略,選擇電流應力作為系統(tǒng)優(yōu)化的指標,建立起各模式下的電流應力模型,以實現(xiàn)電流應力最小。
為了實現(xiàn)上述目的,本發(fā)明采用如下技術方案:
一種考慮死區(qū)效應的雙有源橋DC-DC變換器最小電流應力控制方法,包括以下步驟:
(1)根據(jù)死區(qū)占比、內(nèi)移相角、外移相角以及電流過零點位置的大小關系,構建一、二次側電壓波形以及流經(jīng)電感的電流波形;
(2)根據(jù)所得電壓電流波形,建立功率模型,根據(jù)所建立的輸出功率模型及電流應力模型,利用遺傳算法分析最小電流應力時的參數(shù)選取,并得出最小電流應力優(yōu)化策略。
所述步驟(1)中,死區(qū)占比M、內(nèi)移相角D、外移相角D1都是與半個開關周期的比率,且要求0≤D,D1,M≤0.5,D+D1+M≤1。
所述步驟(1)中,死區(qū)占比M、內(nèi)移相角D、外移相角D1大小關系不同,表明八個開關器件的通斷先后順序不同,結合電流過零點位置,會出現(xiàn)多種運行情況,對這些運行情況進行總結歸類,得出各運行模式。
進一步的,所述步驟(1)中,當電壓轉(zhuǎn)換變比k等于傳輸比與輸出電壓的乘積后與輸入電壓的比值時并非所有的模式都存在。
所述步驟(1)中,采用枚舉法進行分析,并對所有情況進行總結,得出最終的多種運行模式,不符合這些運行模式約束條件的情況,其輸出功率只能為0,這與死區(qū)造成的相位偏移有關。
所述步驟(2)中,在遺傳算法中,以電流應力表達式為目標函數(shù),各比率的大小關系及輸出電流約束條件,得出在不同輸出功率的情況下,各模式的最小電流應力,以及實現(xiàn)該最小值時,各參數(shù)的取值。
所述步驟(2)中,電流應力模型和輸出功率模型都進行標幺化處理,且標幺化電流應力是電流應力與SPS控制下DAB最大輸入平均電流的相對值,標幺化輸出功率是輸出功率與SPS控制下DAB最大傳輸功率的相對值。
所述步驟(2)中,對DAB系統(tǒng)進行優(yōu)化控制時,保證輸出功率一定。
所述步驟(2)中,以電流應力表達式作為目標函數(shù),約束條件為各比率的大小關系以及輸出功率值,得出各模式在不同輸出功率時下的一系列最小電流應力值,以及實現(xiàn)最小電流應力時的參數(shù)值,在得到各模式最小電流應力值以后,比較各個模式之間最小電流應力的大小,獲得所有模式中,最小電流應力值以及此時的參數(shù)選取。
所述步驟(2)中,最小電流應力優(yōu)化策略為:內(nèi)移相角D為零、外移相角D1取調(diào)節(jié)器的輸出值,死區(qū)占比M為調(diào)節(jié)器輸出的一半。
所述控制方法根據(jù)系統(tǒng)運行情況的改變實時在線調(diào)節(jié)。
還包括步驟(3),進行對比試驗,以驗證所提出的最小電流應力控制方法。
與現(xiàn)有技術相比,本發(fā)明的有益效果為:
本發(fā)明以電壓匹配模式為代表,對DAB在雙移相策略下的死區(qū)效應進行了詳細分析,獲得考慮死區(qū)效應的系統(tǒng)開關特性及輸出功率模型,總結出了k=1的情況下,考慮死區(qū)影響的DPS控制策略下的DAB的運行模式,在最優(yōu)電流應力控制策略(optimal-DPS,ODPS)下,系統(tǒng)中的死區(qū)效應不會表現(xiàn)出來。
解決了現(xiàn)有技術中隨著高頻DC-DC變壓器的發(fā)展,死區(qū)造成的影響越來越明顯,且隨著期間開關頻率的升高,死區(qū)效應越發(fā)顯著。死區(qū)的引入是為了避免同一橋臂上下開關管直通問題,增強系統(tǒng)的可靠性,但與此同時,也造成了變壓器波形畸變和能量損失的問題。
附圖說明
構成本申請的一部分的說明書附圖用來提供對本申請的進一步理解,本申請的示意性實施例及其說明用于解釋本申請,并不構成對本申請的不當限定。
圖1為DAB拓撲圖;
圖2為考慮死區(qū)效應且k=1時,在DPS策略下DAB的典型波形;
圖3(a)為模式1下的Uab、Ucd、iL波形;
圖3(b)為模式2下的Uab、Ucd、iL波形;
圖3(c)為模式3下的Uab、Ucd、iL波形;
圖3(d)為模式4下的Uab、Ucd、iL波形;
圖3(e)為模式5下的Uab、Ucd、iL波形;
圖3(f)為模式6下的Uab、Ucd、iL波形;
圖3(g)為模式7下的Uab、Ucd、iL波形;
圖4為各模式下DAB運行的子狀態(tài);
圖5為遺傳算法得出的數(shù)據(jù)繪制得到的P0—i0坐標圖;
圖6為模式4、5、7交界處的波形圖;
圖7為所提出的最小電流應力優(yōu)化策略(ODPS)圖;
圖8(a)為模式1下的實驗波形;
圖8(b)為模式2下的實驗波形;
圖8(c)為模式3下的實驗波形;
圖8(d)為模式4下的實驗波形;
圖8(e)為模式5下的實驗波形;
圖8(f)為模式6下的實驗波形;
圖8(g)為模式7下的實驗波形;
圖9為本發(fā)明中所提出的優(yōu)化策略與一般算法的比較圖。
具體實施方式:
下面結合附圖與實施例對本發(fā)明作進一步說明。
應該指出,以下詳細說明都是例示性的,旨在對本申請?zhí)峁┻M一步的說明。除非另有指明,本文使用的所有技術和科學術語具有與本申請所屬技術領域的普通技術人員通常理解的相同含義。
需要注意的是,這里所使用的術語僅是為了描述具體實施方式,而非意圖限制根據(jù)本申請的示例性實施方式。如在這里所使用的,除非上下文另外明確指出,否則單數(shù)形式也意圖包括復數(shù)形式,此外,還應當理解的是,當在本說明書中使用術語“包含”和/或“包括”時,其指明存在特征、步驟、操作、器件、組件和/或它們的組合。
正如背景技術所介紹的,現(xiàn)有技術中存在的優(yōu)化策略都沒有考慮死區(qū)效應的影響,并且對DAB的死區(qū)效應進行了分析,但其關注點僅限于SPS策略下的波形畸變和相位偏移,對于EPS、DPS和TPS策略還沒有系統(tǒng)的研究,為了解決如上的技術問題,本申請?zhí)岢隽艘环N考慮死區(qū)效應的DAB最小電流應力控制策略。
一、開關特性與輸出功率模型分析
圖1為DAB拓撲圖。圖2為考慮死區(qū)效應的DPS策略下的DAB的開關波形和電壓電流波形。從圖中可以看出,相較于傳統(tǒng)不考慮死區(qū)的DPS策略,增加了M這一代表死區(qū)的比率,M和D、D1共同調(diào)節(jié)輸出功率。
本發(fā)明以枚舉法來獲得死區(qū)效應下的各運行模式的波形,即考慮每一種M、D、D1、t0的大小關系。為了方便分析,以S4關斷為初始時刻,t0表示電流iL過零點。如圖3所示,經(jīng)過分析,共得出7中不同的模式,此處僅以模式1中t0<M<D<D1<M+D為代表進行詳細介紹,其他模式類似可得。由于DAB結構對稱,一個周期內(nèi)波形也是對稱的,因此,本發(fā)明僅分析半個周期內(nèi)的開關狀態(tài)。
在t0<M<D<D1<M+D時,開關通斷順序以及相應的波形如圖3(a)所示。
初始時刻,電流iL方向為正,此時系統(tǒng)所處的開關狀態(tài)如圖4(a)子狀態(tài)所示,且在初始時刻,S4關斷。由于死區(qū)的存在,S3不能立即導通,因此在一次側,電流流經(jīng)S1和D3,如圖4(b)所示,漏感Lr兩端的電壓被嵌位到-nU2,因此電流減小,在t0點,電流減小到0。在t0-t1期間,一次側全橋停止工作,二次側全橋處于無負載逆變狀態(tài),如圖4(c)所示,此時,電感兩端電壓為0,電流也保持為0。S3關斷后,電流在一次側流經(jīng)S3和D1,在二次側流經(jīng)Q1和Q4,電流反向減小,如圖4(d)所示。之后S1關斷,系統(tǒng)所處的開關狀態(tài)不變,直到Q4關斷,開關狀態(tài)變?yōu)?(e)。在t2-t3期間,電感兩端電壓被嵌位到0,電流保持不變。當S2開通后,一次側電流流經(jīng)S2和S3,二次側流經(jīng)Q1和M3,如圖4(f)所示。在t4之前,Q3開通,開關狀態(tài)保持不變,直到Q1關斷,開關狀態(tài)切換到圖4(g)。
經(jīng)過計算,可以得出電流過零點的表達式:
t0=2(D1-M) (1)
同時可根據(jù)功率計算公式得出功率表達式:
經(jīng)過相同的分析,得出7中不同的運行模式,如圖3所示??梢钥闯?,在一些模式下,電壓極性反轉(zhuǎn)的問題存在,但是電壓跌落的狀況不存在,這是因為本發(fā)明中,選取k=1來分析,即nU2=U1,因此不存在電壓跌落的情況。最終各模式的約束條件、電流過零點表達式、輸出功率模型都可得出。
為了方便計算,將所得傳輸功率表達式進行標幺化處理,標幺化后的傳輸功率P0計算方式如下:
其中,PN為SPS控制策略下的最大傳輸功率,表達式為:
經(jīng)過標幺化后的傳輸功率模型以及相應的約束條件、電流過0點總結如表1:
表1
二、電流應力最優(yōu)化分析
在此基礎上,本發(fā)明對考慮死區(qū)效應的DAB的最小電流應力進行了優(yōu)化分析。
電流應力作為DAB性能的一項指標,能夠一定程度上反映系統(tǒng)的效率高低。電流應力的定義為:
imax=max{|iL(t)|} (5)
通過之前的分析,可知電流iL在初始時刻到達最大值,因此計算初始時刻電流值即可得到電流應力模型。同樣的,為了簡化計算,對電流應力也進行標幺化處理:
其中,IN為SPS控制策略下,DAB最大輸入平均電流,定義為:
經(jīng)過計算得出的各模式下的電流應力表達式也總結在表1中。
電流應力最優(yōu)化分析的前提是輸出功率一定。經(jīng)過上述計算,得出電流應力表達式和輸出功率表達式,就可進行電流應力的優(yōu)化分析。傳統(tǒng)優(yōu)化分析方法包括拉格朗日乘子法、線下計算建表法等等,對于本發(fā)明建立的模型,拉格朗日乘子法由于不方便解決約束條件的限制,不再使用,而建表法會使系統(tǒng)的實時性變差,因此本發(fā)明將遺傳算法運用到DAB的優(yōu)化處理中,提出一種新的實現(xiàn)最優(yōu)控制的途徑,步驟如下:
(1)在遺傳算法中,以電流應力表達式為目標函數(shù),各比率的大小關系及輸出電流
約束條件,得出在不同輸出功率的情況下,各模式的最小電流應力,以及實現(xiàn)該最小值時,各參數(shù)的取值;
(2)作出傳輸功率與各模式下最小電流應力的坐標圖,如圖5所示;
(3)通過對比發(fā)現(xiàn),模式4、5、7的坐標曲線高度重合,并且比其他模式的最小電流
應力更小。對比這三種模式實現(xiàn)最小電流應力時的參數(shù),發(fā)現(xiàn)滿足以下公式:
其中,小于號僅出現(xiàn)在模式5中。在這種情況下,最小電流應力表達式為:
實際上,在滿足公式(8)的情況下,模式4、5、7的波形完全相同,如圖6所示,即圖6為模式4、5、7交界處波形。進一步分析可發(fā)現(xiàn),在該模式下,死區(qū)對系統(tǒng)的影響表現(xiàn)不出來,因為該模式的波形與不考慮死區(qū)時的波形是完全相同的。
(4)為了使優(yōu)化策略更加簡單,忽略公式(8)中的小于號,得到以下公式:
由該公式可看出,D1隨P0的增加而單調(diào)遞增,因此可將PI調(diào)節(jié)器的輸出PC0作為D1,對系統(tǒng)進行實時調(diào)節(jié),當然,PI調(diào)節(jié)器可以替換為其他調(diào)節(jié)器,此時優(yōu)化策略如下:
控制框圖如圖7所示。
三、實驗驗證與分析
為驗證本發(fā)明的可行性,借助RT-LAB搭建實驗平臺,對以上理論分析進行了驗證。相關參數(shù)如表2所示。
表2
圖8為模式1~模式7的實驗波形,輸入電壓為400V,根據(jù)約束條件調(diào)節(jié)各比率M、D、D1,以及負載R,使輸出電壓限定在200V,獲得各模式的波形。從圖中可以看出,實驗結果與前述理論分析一致。在模式6和模式7波形中可以看到電壓極性反轉(zhuǎn)現(xiàn)象。
在實際工程中,死區(qū)時間根據(jù)開關管的開通關斷時間確定,為固定值。為了對比本發(fā)明中所提出的電流應力優(yōu)化方案與傳統(tǒng)固定死區(qū)時間方案,將死區(qū)時間設定為500ns,調(diào)節(jié)其他參數(shù),獲取一系列電流應力的值。另外,以本發(fā)明提出的圖7所示的控制策略,同樣獲取一系列電流應力值。對比結果如圖9所示。如圖所示,本發(fā)明提出的最小電流應力控制方案,在整個功率范圍內(nèi)都比傳統(tǒng)固定死區(qū)的方案所獲得的電流應力小,而且隨著功率等級的增加更加明顯。
以上所述僅為本申請的優(yōu)選實施例而已,并不用于限制本申請,對于本領域的技術人員來說,本申請可以有各種更改和變化。凡在本申請的精神和原則之內(nèi),所作的任何修改、等同替換、改進等,均應包含在本申請的保護范圍之內(nèi)。
上述雖然結合附圖對本發(fā)明的具體實施方式進行了描述,但并非對本發(fā)明保護范圍的限制,所屬領域技術人員應該明白,在本發(fā)明的技術方案的基礎上,本領域技術人員不需要付出創(chuàng)造性勞動即可做出的各種修改或變形仍在本發(fā)明的保護范圍以內(nèi)。