亚洲成年人黄色一级片,日本香港三级亚洲三级,黄色成人小视频,国产青草视频,国产一区二区久久精品,91在线免费公开视频,成年轻人网站色直接看

一種基于QoE的云計算服務架構的制作方法

文檔序號:12753398閱讀:來源:國知局

技術特征:

1.一種基于QoE的云計算服務架構,通過采用高效業(yè)務處理引擎架構模型和建立鄰近節(jié)點傳輸時延與功率優(yōu)化均衡機制,實現云計算中業(yè)務的高效、安全匯聚與傳輸,包括如下步驟:

A、建立基于QoE的云計算服務模型;

B、建立基于QoE的云計算服務流程;

C、建立數據中心能量管理優(yōu)化模型。

2.根據權利要求1的方法,對于所述步驟A其特征在于:基于QoE的云計算服務模型由中央調度器、數據中心資源管理單元、光纖,服務管理控制單元、多個計算和存儲單元組成,其中數據中心資源管理單元主要由本地調度器、QoE估計單元和綠色能源估計單元組成,每一個計算和存儲單元具有相應的數據中心資源管理單元,其用于對計算和存儲資源、能量分配和QoE的協(xié)同管理和調節(jié),中央調度器用于實現數據中心資源管理單元間的統(tǒng)一協(xié)同工作。

3.根據權利要求1的方法,對于所述步驟B其特征在于:基于QoE的云計算服務流程具體為:服務管理控制單元包括服務周期循環(huán)操作與控制單元、服務邏輯規(guī)劃單元、云服務資源發(fā)現與分配單元、基于云服務的架構部署設置單元、虛擬服務池、云服務定義與操作單元、數據分析單元、數據和服務管理單元、服務邏輯規(guī)劃單元以及流數據處理單元,其中服務周期循環(huán)操作與控制單元包含服務周期循環(huán)規(guī)則管理單元和管理引擎,云服務資源發(fā)現與分配單元包含資源自適應優(yōu)化分配單元和虛擬網絡架構管理單元,云服務定義與操作單元包含虛擬服務與實體服務映射轉化單元和服務請求單元,數據分析單元包含模糊控制單元、數據文檔和分類和歸一化處理單元,數據和服務管理單元包含數據修正引擎和日志文檔管理單元。

4.根據權利要求1的方法,對于所述步驟B其特征在于:一方面,首先服務請求單元接收用戶的服務請求,并將其傳遞至數據分析單元,數據分析單元中的模糊控制單元通過相應的規(guī)則將數據文檔進行預處理,然后進行分類和歸一化處理,并且其通過日志文檔管理單元傳遞至數據修正引擎,數據修正引擎將修正調節(jié)參數和被處理后的數據傳遞至管理引擎,另一方面,服務周期循環(huán)操作與控制單元通過服務邏輯規(guī)劃單元將動態(tài)管理信息傳遞至云服務資源發(fā)現與分配單元,其中服務邏輯規(guī)劃單元用于云服務進程的動態(tài)分配與調整,云服務資源發(fā)現與分配單元根據動態(tài)管理信息,并通過QoE優(yōu)化保障單元提供的相關參數信息對虛擬服務池中的服務資源進行搜尋與分配,隨之通過虛擬服務與實體服務映射轉化單元實現虛擬服務資源與實體服務資源的實時轉化。

5.根據權利要求1的方法,對于所述步驟C其特征在于:采用如下優(yōu)化模型來實現:

<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </mtd> <mtd> <mrow> <munder> <mo>&Sigma;</mo> <mrow> <mi>d</mi> <mo>&Element;</mo> <mi>D</mi> </mrow> </munder> <msub> <mi>c</mi> <mi>d</mi> </msub> <mo>&CenterDot;</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>k</mi> <mo>&Element;</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> </mrow> </munder> <msub> <mi>p</mi> <mrow> <mi>d</mi> <mi>k</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>y</mi> <mrow> <mi>d</mi> <mi>k</mi> </mrow> </msub> <mo>+</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>e</mi> <mo>&Element;</mo> <mi>E</mi> </mrow> </munder> <msub> <mi>c</mi> <mi>e</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>z</mi> <mi>e</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>

<mrow> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <mfrac> <mn>1</mn> <mrow> <munder> <mo>&Sigma;</mo> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <msub> <mi>nl</mi> <mi>l</mi> </msub> </mrow> </mfrac> <mo>&CenterDot;</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>l</mi> <mo>&Element;</mo> <mi>L</mi> </mrow> </munder> <munder> <mo>&Sigma;</mo> <mrow> <mi>d</mi> <mo>&Element;</mo> <mi>D</mi> </mrow> </munder> <msub> <mi>nl</mi> <mi>l</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>q</mi> <mrow> <mi>l</mi> <mi>d</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>x</mi> <mrow> <mi>v</mi> <mi>d</mi> </mrow> </msub> <mo>&le;</mo> <msub> <mi>th</mi> <mi>v</mi> </msub> <mo>,</mo> <mi>v</mi> <mo>&Element;</mo> <mi>V</mi> </mrow> </mtd> </mtr> </mtable> <mo>,</mo> </mrow>

<mrow> <munder> <mo>&Sigma;</mo> <mrow> <mi>d</mi> <mo>&Element;</mo> <mi>D</mi> </mrow> </munder> <msub> <mi>x</mi> <mrow> <mi>v</mi> <mi>d</mi> </mrow> </msub> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mo>&ForAll;</mo> <mi>v</mi> <mo>&Element;</mo> <mi>V</mi> <mo>,</mo> </mrow>

<mrow> <mi>n</mi> <mi>s</mi> <mo>&CenterDot;</mo> <msub> <mi>&gamma;</mi> <mi>d</mi> </msub> <mo>&GreaterEqual;</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>v</mi> <mo>&Element;</mo> <mi>V</mi> </mrow> </munder> <msub> <mi>nc</mi> <mi>v</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>x</mi> <mrow> <mi>v</mi> <mi>d</mi> </mrow> </msub> <mo>,</mo> <mo>&ForAll;</mo> <mi>d</mi> <mo>&Element;</mo> <mi>D</mi> <mo>,</mo> </mrow>

<mrow> <msub> <mi>&rho;</mi> <mi>d</mi> </msub> <msup> <mi>M</mi> <mn>2</mn> </msup> <mo>&GreaterEqual;</mo> <mn>4</mn> <msub> <mi>&gamma;</mi> <mi>d</mi> </msub> <mo>,</mo> <mo>&ForAll;</mo> <mi>d</mi> <mo>&Element;</mo> <mi>D</mi> <mo>,</mo> </mrow>

<mrow> <msub> <mi>b</mi> <mi>d</mi> </msub> <mo>=</mo> <msub> <mi>PUE</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mfrac> <msup> <mi>M</mi> <mn>2</mn> </msup> <mn>4</mn> </mfrac> <msub> <mi>w</mi> <mrow> <mi>c</mi> <mi>o</mi> <mi>r</mi> <mi>e</mi> </mrow> </msub> <mo>+</mo> <mfrac> <mi>M</mi> <mn>2</mn> </mfrac> <mo>(</mo> <mrow> <msub> <mi>w</mi> <mrow> <mi>a</mi> <mi>g</mi> <mi>g</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>w</mi> <mrow> <mi>e</mi> <mi>d</mi> <mi>g</mi> <mi>e</mi> </mrow> </msub> </mrow> <mo>)</mo> <msub> <mi>&rho;</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> <mo>-</mo> <mi>max</mi> </mrow> </msub> <mo>&CenterDot;</mo> <msub> <mi>y</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>w</mi> <mrow> <mi>s</mi> <mi>e</mi> <mi>v</mi> <mi>e</mi> <mi>r</mi> <mo>-</mo> <mi>i</mi> <mi>d</mi> <mi>l</mi> <mi>e</mi> </mrow> </msub> <mo>&CenterDot;</mo> <mo>(</mo> <mrow> <mfrac> <msup> <mi>M</mi> <mn>2</mn> </msup> <mn>2</mn> </mfrac> <msub> <mi>&rho;</mi> <mi>d</mi> </msub> <msub> <mi>&gamma;</mi> <mi>d</mi> </msub> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>,</mo> <mo>&ForAll;</mo> <mi>d</mi> <mo>&Element;</mo> <mi>D</mi> </mrow>

<mrow> <msub> <mi>y</mi> <mrow> <mi>d</mi> <mi>k</mi> </mrow> </msub> <mo>&GreaterEqual;</mo> <msub> <mi>b</mi> <mi>d</mi> </msub> <mo>-</mo> <msub> <mi>g</mi> <mrow> <mi>d</mi> <mi>k</mi> </mrow> </msub> <mo>,</mo> <mo>&ForAll;</mo> <mi>d</mi> <mo>&Element;</mo> <mi>D</mi> <mo>,</mo> <mi>k</mi> <mo>&Element;</mo> <mi>K</mi> <mrow> <mo>(</mo> <mi>d</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow>

<mrow> <msub> <mi>z</mi> <mi>e</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mo>&Sigma;</mo> <mrow> <mi>v</mi> <mo>&Element;</mo> <mi>V</mi> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </munder> <msub> <mi>u</mi> <mi>v</mi> </msub> <mo>&CenterDot;</mo> <msub> <mi>x</mi> <mrow> <mi>v</mi> <mi>d</mi> <mn>2</mn> </mrow> </msub> <mo>,</mo> <mo>&ForAll;</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>&Element;</mo> <mi>D</mi> <mo>,</mo> <msub> <mi>d</mi> <mn>1</mn> </msub> <mo>&NotEqual;</mo> <msub> <mi>d</mi> <mn>2</mn> </msub> <mo>,</mo> </mrow>

<mrow> <msub> <mi>z</mi> <mi>e</mi> </msub> <mo>&le;</mo> <msub> <mi>u</mi> <mi>e</mi> </msub> <mo>,</mo> <mo>&ForAll;</mo> <mi>e</mi> <mo>&Element;</mo> <mi>E</mi> </mrow>

其中D為數據中心集合,d∈D為數據中心標識,E為光纖鏈路集合,e∈E為光纖鏈路標識,V為虛擬機集合,v∈V為虛擬機標識,V(d)為數據中心d的虛擬機集合,L為客戶端位置集合,l為客戶端位置標識,K(d)為數據中心d處于工作狀態(tài)的概率場景集合,qld為位置l中的用戶對數據中心d的QoE評價值,nll為位置l中的用戶數,thv為用于保障用戶接入虛擬機的平均QoE門限值,M為每一個數據中心的計算單元數量,ns為每一個服務器的處理器單元數目,uv為GB數據量所需的虛擬機v的規(guī)模,ncv為虛擬機v的處理器單元數目,ue為鏈路e的容量,ce為使用鏈路e傳輸每一GB數據所需的使用代價,cd為數據中心d每千瓦時所消耗的能量,gdk為在概率場景k時數據中心d的可用綠色能源,pdk為數據中心處于運行場景k的概率,xvd為決策變量,若虛擬機v處于數據中心d則xvd=1,反之則xvd=0,ydk為在概率場景k時數據中心d的能量消耗,ze為光纖鏈路e中的流量,ze為正整數,ρd為數據中心d中的計算單元切換系數,其為正整數,bd為數據中心d的總體能量消耗,PUEd為數據中心d的能量使用效能。

當前第2頁1 2 3 
網友詢問留言 已有0條留言
  • 還沒有人留言評論。精彩留言會獲得點贊!
1