本發(fā)明涉及一種采用移動(dòng)最小二乘法的風(fēng)電場(chǎng)功率曲線擬合方法。
背景技術(shù):
目前對(duì)于實(shí)測(cè)功率曲線的建模方法主要有最大值法、比恩法、最大概率法等。由于采集風(fēng)速-功率數(shù)據(jù)不可避免地在某些時(shí)刻存在一定的誤差,這些方法在擬合過程均存在一定的缺陷。
最大值法在功率曲線建模的過程中只是考慮最大的點(diǎn),在應(yīng)用過程中將風(fēng)速按照每0.5m/s為一組記為一個(gè)區(qū)間,然后找到這個(gè)區(qū)間中的風(fēng)速最大值以及對(duì)應(yīng)的功率最大值,依次得到數(shù)據(jù),然后通過多項(xiàng)式擬合法得到一條曲線,即功率曲線。傳統(tǒng)的bin功率曲線擬合方法,通過求得風(fēng)速各個(gè)區(qū)間的平均值以及對(duì)應(yīng)的功率平均值,最后將點(diǎn)連成一條平滑的曲線;最大概率法將散點(diǎn)圖中的所有數(shù)據(jù)按照風(fēng)速分成若干數(shù)據(jù)層,然后在每個(gè)數(shù)據(jù)層中隨機(jī)抽取一個(gè)小的區(qū)間,統(tǒng)計(jì)出區(qū)間中出現(xiàn)概率最高的功率值,得到該數(shù)據(jù)層中的有效點(diǎn),每個(gè)數(shù)據(jù)層都得到這個(gè)有效點(diǎn),用平滑曲線連接起來(lái),即得到功率曲線;這些方法計(jì)算下來(lái)相對(duì)誤差較大,如果采集的風(fēng)速-功率離散數(shù)據(jù)量過大,還需要進(jìn)行分段(分塊)擬合和平滑化,這在實(shí)際中往往存在困難。
目前有的專家學(xué)者在擬合功率曲線的過程中采用徑向基函數(shù)線性組合得到功率曲線,這種方法目前只是適用于整體插值,不能局部修改,當(dāng)數(shù)據(jù)量不大時(shí),擬合效果較準(zhǔn)確,當(dāng)采集到的風(fēng)速功率離散數(shù)據(jù)較多時(shí)則會(huì)出現(xiàn)計(jì)算不穩(wěn)定,計(jì)算耗時(shí)等情況。
技術(shù)實(shí)現(xiàn)要素:
本發(fā)明的目的是提供一種采用移動(dòng)最小二乘法的風(fēng)電場(chǎng)功率曲線擬合方法。
本發(fā)明采用以下技術(shù)方案:一種采用移動(dòng)最小二乘法的風(fēng)電場(chǎng)功率曲線擬合方法,其包括以下步驟:
步驟(1):確定擬合區(qū)域一個(gè)小的局部子域中擬合函數(shù)p(v):
其中:α(v)=[α1(v),α2(v)…αm(v)]t為待求系數(shù),這是關(guān)于橫坐標(biāo)風(fēng)速v的函數(shù),b(v)=[b1(v),b2(v)…b3(v)]t成為基函數(shù),這是一個(gè)k階多項(xiàng)式,m是基函數(shù)的項(xiàng)數(shù),通常取值2、3、6;
步驟(2):考慮加權(quán)離散范式得到:
其中:n是影響區(qū)域內(nèi)的節(jié)點(diǎn)個(gè)數(shù);pi是橫坐標(biāo)風(fēng)速在v=vi處的功率值,pi=p(vi);ω(v-vi)是節(jié)點(diǎn)vi的權(quán)函數(shù);公式(2)基函數(shù)寫成矩陣形式為:
權(quán)函數(shù)用對(duì)角線矩陣形式表示為:
為確定系數(shù)α(v),取(2)極值得:
α(v)=a-1(v)d(v)p(22)
其中:
d(v)=[ω(v-v1)b(v1),ω(v-v2)b(v2),lω(v-vn)b(vn)](24)
此處選取基函數(shù)為一次線性基,寫成矩陣形式分別為:
a=btw(v)b(25)
d=btw(v)(27)
pt=[p1,p2,lpn](29)
步驟(3):選取緊支撐域;
步驟(4):選取權(quán)函數(shù);
步驟(5):建立移動(dòng)最小二乘法擬合功率曲線:
p(v)=bt(v)a-1(v)d(v)p(30)
其中:定義形函數(shù)為:
ω(v)=bt(v)a-1(v)d(v)(31)
步驟(6):誤差校驗(yàn)
emax=max|p(vi)-p|1≤i≤n(32)
在本發(fā)明一實(shí)施例中,步驟(3)中包括以下具體步驟:以標(biāo)準(zhǔn)功率曲線的風(fēng)速-功率坐標(biāo)點(diǎn)為矩形的中心點(diǎn),分別以風(fēng)機(jī)輸入風(fēng)速的變化范圍和功率的變化范圍為長(zhǎng)和寬來(lái)建立矩形,以中心點(diǎn)為坐標(biāo)原點(diǎn)建立坐標(biāo)軸,分成四個(gè)象限,分別選取四個(gè)象限中離原點(diǎn)最近的點(diǎn)hi1、hi2、hi3、hi4,取r=max{hi1,hi2,hi3,hi4}為緊支撐域圓的半徑。
在本發(fā)明一實(shí)施例中,步驟(4)中權(quán)函數(shù)采用三次樣條函數(shù),具體形式如下:
式中:
本發(fā)明采用移動(dòng)最小二乘法的擬合精度高,且只需要選擇權(quán)函數(shù)和基函數(shù)就可以得到一條足夠光滑的風(fēng)速-功率曲線。同時(shí)這種風(fēng)速-功率曲線擬合的方法,可以取不同階的基函數(shù)來(lái)獲得不同的精度,取不同的權(quán)函數(shù)來(lái)改變擬合曲線的光滑度,而且還能考慮風(fēng)速之間的相互影響,這些是其他的功率擬合方法無(wú)法做到的。
附圖說明
圖1為本發(fā)明的主要流程示意圖。
圖2為本發(fā)明一實(shí)施例的緊支撐域選取示意圖。
具體實(shí)施方式
下面結(jié)合附圖和具體實(shí)施例對(duì)本發(fā)明做進(jìn)一步解釋說明。
本發(fā)明采用移動(dòng)最小二乘法擬合功率曲線,而不是依據(jù)傳統(tǒng)的多項(xiàng)式或者其它函數(shù)來(lái)進(jìn)行擬合,因此不需要提前確定擬合函數(shù)的類型;同時(shí)擬合過程中引入了緊支域條件下的權(quán)函數(shù),限制了數(shù)據(jù)誤差的影響范圍。此外在擬合過程中不需要及求解線性方程組,避免了求解過程中系數(shù)矩陣出現(xiàn)病態(tài)的情況。主要流程圖參見圖1。
具體包括以下步驟:
步驟(1):確定擬合區(qū)域一個(gè)小的局部子域中擬合函數(shù)p(v)。
其中:α(v)=[α1(v),α2(v)…αm(v)]t為待求系數(shù),這是關(guān)于橫坐標(biāo)風(fēng)速v的函數(shù),b(v)=[b1(v),b2(v)…b3(v)]t成為基函數(shù),這是一個(gè)k階多項(xiàng)式,m是基函數(shù)的項(xiàng)數(shù),通常取值2,3,6。
步驟(2):待求系數(shù)α(v)的求解。
考慮加權(quán)離散范式得到:
其中:n是影響區(qū)域內(nèi)的節(jié)點(diǎn)個(gè)數(shù);p(v)是擬合的功率曲線;pi是橫坐標(biāo)風(fēng)速在v=vi處的功率值,pi=p(vi);ω(v-vi)是節(jié)點(diǎn)vi的權(quán)函數(shù);公式(2)基函數(shù)寫成矩陣形式為:
權(quán)函數(shù)用對(duì)角線矩陣形式表示為:
為確定系數(shù)α(v),取(2)極值得:
α(v)=a-1(v)d(v)p(39)
其中:
d(v)=[ω(v-v1)b(v1),ω(v-v2)b(v2),lω(v-vn)b(vn)](41)
此處選取基函數(shù)為一次線性基,寫成矩陣形式分別為:
a=btw(v)b(42)
d=btw(v)(44)
pt=[p1,p2,lpn](46)
步驟(3):緊支撐域的選取
本發(fā)明一實(shí)施例中,以標(biāo)準(zhǔn)功率曲線的風(fēng)速-功率坐標(biāo)點(diǎn)為矩形的中心點(diǎn),分別以風(fēng)機(jī)輸入風(fēng)速的變化范圍和功率的變化范圍為長(zhǎng)和寬來(lái)建立矩形,以中心點(diǎn)為坐標(biāo)原點(diǎn)建立坐標(biāo)軸,分成四個(gè)象限,分別選取四個(gè)象限中離著原點(diǎn)最近的點(diǎn)hi1、hi2、hi3、hi4,取r=max{hi1,hi2,hi3,hi4}為緊支撐域的半徑做圓,具體如圖2所示:
步驟(4):權(quán)函數(shù)的選取
權(quán)函數(shù)在移動(dòng)最小二乘法中有著非常重要的作用,同樣移動(dòng)最小二乘法中的權(quán)函數(shù)也應(yīng)該具有一定的緊支性,也就是權(quán)函數(shù)在支撐域中不為0,在支撐域以外為0。同樣,權(quán)函數(shù)還應(yīng)該具有一定的光滑性,因?yàn)閿M合曲線會(huì)繼承權(quán)函數(shù)的連續(xù)性。本發(fā)明一實(shí)施例中采用三次樣條函數(shù),具體形式如下:
式中:
步驟(5):移動(dòng)最小二乘法擬合功率曲線的建立(將公式(5)帶入公式(1))
p(v)=bt(v)a-1(v)d(v)p(48)
其中:定義形函數(shù)為:
ω(v)=bt(v)a-1(v)d(v)(49)
步驟(6):誤差校驗(yàn)
emax=max|p(vi)-p|1≤i≤n(50)
采用移動(dòng)最小二乘法的擬合精度高,且只需要選擇權(quán)函數(shù)和基函數(shù)就可以得到一條足夠光滑的風(fēng)速-功率曲線。同時(shí)這種風(fēng)速-功率曲線擬合的方法,可以取不同階的基函數(shù)來(lái)獲得不同的精度,取不同的權(quán)函數(shù)來(lái)改變擬合曲線的光滑度,而且還能考慮風(fēng)速之間的相互影響,這些是其他的功率擬合方法無(wú)法做到的。
以上是本發(fā)明的較佳實(shí)施例,凡依本發(fā)明技術(shù)方案所作的改變,所產(chǎn)生的功能作用未超出本發(fā)明技術(shù)方案的范圍時(shí),均屬于本發(fā)明的保護(hù)范圍。