技術(shù)編號(hào):40401938
提示:您尚未登錄,請(qǐng)點(diǎn) 登 陸 后下載,如果您還沒(méi)有賬戶請(qǐng)點(diǎn) 注 冊(cè) ,登陸完成后,請(qǐng)刷新本頁(yè)查看技術(shù)詳細(xì)信息。本發(fā)明屬于神經(jīng)網(wǎng)絡(luò),特別涉及一種基于simd指令的lstm實(shí)現(xiàn)方法。背景技術(shù)、在傳統(tǒng)神經(jīng)網(wǎng)絡(luò)中,模型不會(huì)關(guān)注上一時(shí)刻的處理會(huì)有什么信息可以用于下一時(shí)刻,每一次都只會(huì)關(guān)注當(dāng)前時(shí)刻的處理。舉個(gè)例子來(lái)說(shuō),我們想對(duì)一部影片中每一刻出現(xiàn)的事件進(jìn)行分類,如果我們知道電影前面的事件信息,那么對(duì)當(dāng)前時(shí)刻事件的分類就會(huì)非常容易。實(shí)際上,傳統(tǒng)神經(jīng)網(wǎng)絡(luò)沒(méi)有記憶功能,所以它對(duì)每一刻出現(xiàn)的事件進(jìn)行分類時(shí)不會(huì)用到影片已經(jīng)出現(xiàn)的信息,而recurrent?neural?networks(rnns)遞歸神經(jīng)網(wǎng)絡(luò)可以讓神經(jīng)網(wǎng)絡(luò)...
注意:該技術(shù)已申請(qǐng)專利,請(qǐng)尊重研發(fā)人員的辛勤研發(fā)付出,在未取得專利權(quán)人授權(quán)前,僅供技術(shù)研究參考不得用于商業(yè)用途。
該專利適合技術(shù)人員進(jìn)行技術(shù)研發(fā)參考以及查看自身技術(shù)是否侵權(quán),增加技術(shù)思路,做技術(shù)知識(shí)儲(chǔ)備,不適合論文引用。
請(qǐng)注意,此類技術(shù)沒(méi)有源代碼,用于學(xué)習(xí)研究技術(shù)思路。